genera are developed strictly on separate plants from the seed structures. Nine of the twelve genera being recognized here occur in the tropics and four of these are endemic to the tropics. All but a few species of the family grow in very moist areas, some, particularly in Tasmania, being found beyond the tree line as small or prostrate shrubs. Most, however, are large forest trees, many with broad leaves quite unlike the usual conception of conifers.

Within Podocarpaceae there has been great variation in the size and complexity of the recognized genera. The genus Podocarpus as generally treated involves up to eight sections and well over one hundred species, the differences between some of these sections being every bit as great as those which separate most other genera. It is being proposed here to divide Podocarpus into five separate genera in order to produce a more balanced treatment of the family. In addition, one new genus is separated from Dacrydium because of the different form of the fertile shoots and the strikingly different foliage morphology. The result is a total of twelve genera in the family, of which nine are to be considered in this study, six in part I and three in part II.

## Key to the Genera of Podocarpaceae

1. Seed cone compact, seeds not subterminal.
2. Ovules inverted.
3. Cones produced on ordinary foliage branches; adult leaves in the form of scales.
4. Seed partly covered by an epimatium; leaves opposite, decussate.
(Microcachrys, not tropical).
5. Seed completely enveloped in the fertile scale or epimatium; leaves spirally arranged.
(some species of Dacrydium, not tropical).
6. Fertile shoot specialized; adult leaves linear, flat, constricted at the base.
(Saxegothaea, not tropical).
7. Ovules erect.
8. Fertile scale lacking; adult leaves developed.
(Microstrobus, not tropical).
9. Fertile scale an epimatium; adult leaves suppressed in favor of phylloclads.

Phyllocladus.

1. Seeds one or a few, subterminal or dispersed near the end of a fertile branch.
2. Seed free, projecting above an epimatium (fertile scale).
3. Seed structures terminal on ordinary foliage branches; leaves crowded, awl-like, linear, or scale-like. ............ Dacrydium (most species).
4. Seed structures lateral on specialized shoots; leaves bilaterally flattened and distichous.

Falcatifolium.
6. Seed covered by or fused with the scale.
8. Fertile bract forming a terminal crest over seed complex; leaves awllike.

Dacrycarpus.
8. Fertile bract separate from the seed complex; leaves flat.
9. Seed complex becoming erect; leaves bilaterally flattened.

Acmopyle.
9. Seed complex remaining inverted, leaves bifacially flattened.
10. Fertile shoot terminal on ordinary foliage branches; leaves scale-like; parasitic shrub. [Podocarpus sect. Microcarpus]. ${ }^{1}$
10. Specialized fertile shoot, usually axillary; leaves broad and flat, usually distichous; not parasitic.
11. Fertile shoot scaly; leaves never with both hypoderm and accessory transfusion tissue.
12. Seed with a beak; leaves with hypoderm, usually amphistomatic and decussate, oval or lanceolate.

Decussocarpus.
12. Seed without a beak; leaves without hypoderm, spirally placed and hypostomatic, linear.

Prumnopitys.
11. Fertile shoot divided into a naked peduncle and a specialized fleshy receptacle; leaves with both hypoderm and accessory transfusion tissue.

Podocarpus.
Phyllocladus L. C. \& A. Rich. ex Mirbel, Mém, Mus. Hist. Nat. Paris 13: 48. 1825, nom. cons. Type species: Phyllocladus billardieri Rich. ex Mirbel [Phyllocladus aspleniifolius (Labill.) Hooker].

Podocarpus Labill. Nov. Holl. Pl. Sp. 2: 71. t. 221. 1806. Type species: Podocarpus aspleniifolius Labill. [Phyllocladus aspleniifolius (Labill.) Hooker].
Brownetera L. C. Rich. Ann. Mus. Paris 16: 299. 1810. Nomen nudum based on Podocarpus aspleniifolius.
Thalamia Sprengel, Anleitung zur Kenntniss der Gewächse. ed. 2. 2: 218. 1817, based on Podocarpus aspleniifolius.

Small to large trees; bark dark brown or blackish and smooth, reddish and fibrous within, shed in large thin flakes; abundantly branched, branches often in whorls; juvenile leaves linear or slightly broader near the apex, acute or rounded but with a small spine-like point, 1 mm . or more wide and about 1 cm . long, changing rapidly on small plants to flattened leaf-branch complexes or phylloclads with scale-leaves on nonfoliage branches; leaves represented by small spurs on the margins of the phylloclads, strongly keeled on the dorsal side, triangular in cross section and on older plants scarcely or not distinguishable; phylloclads extremely variable in shape, broad, dorsiventrally slightly differentiated in some cases, reaching several cm . in length or aggregated along branches in complexes to more than 20 cm . long or transitional as a large deeply lobed phylloclad; monoecious, but individual trees may be unisexual; pollen cones in clusters but the central axis of the cluster in most cases continuing growth, nearly sessile or stalked; seed cone consisting of several or numerous scales some of which are sterile, single ovules erect in the axil of a scale; seed cones terminal or marginal on fully grown or reduced phylloclads or clustered as are the pollen cones, becoming swollen, fleshy or leathery; erect seeds as many as 20 per cone but usually only 2 or 3 , with a filmy aril (symmetrical but rough edged epimatium) growing as

[^0]a cup around the lower half, protruding beyond the scale when ripe, oval, wider than thick, with the micropyle as a crooked tip, about 3 mm . long.

The genus consists of five closely related species in mild to cool and very moist climates, three in New Zealand, one in Tasmania, and one in mountain areas from the Philippines to New Guinea. Phyllocladus is sharply distinguished from related taxa by the distinctive phylloclads which give it the popular name of "celery-topped pine." The bark contains abundant tannin and the wood is of good quality but, because all of the forest species grow as scattered individuals, its commercial value is limited. One species in New Zealand and part of the population in Tasmania grow as bushy pioneer plants around mountain meadows. The one tropical example of this genus is the only podocarp species growing in the tropics whose seeds are produced in a recognizable cone. This certainly suggests that the family Podocarpaceae, so abundantly developed within the tropics, had its origins in cooler climate areas.

1. Phyllocladus hypophyllus Hooker f. Icon. Pl. t. 889. 1852. Type: Low s.n., Mt. Kinabalu.

Phyllocladus hypophyllus var. protracta Warb. Monsunia 1: 194. 1900. Syntypes: Warburg 14722, S. Mindanao, mountain forest of Dagatpan and 18272, Batjan (not seen).
Phyllocladus protractus (Warb.) Pilger, Pflanzenreich IV. 5 (Heft 18): 99. 1903.

Phyllocladus major Pilger, Bot. Jahrb. 54: 211. 1916. Type: Ledermann 9872, Lordberg, NE. New Guinea.

Common small tree on ridges or becoming quite large in the forest, 30 m . or more high; bark hard, rough with large lenticels, dark brown, breaking off in large scales; inner bark straw color; branches more or less whorled around the main stem and densely ramified; foliar buds on young plants with long thin and somewhat spreading bracts, these becoming tighter and more globular on older plants; phylloclads sometimes glaucous, particularly underneath, variable in shape, deeply lobed on young specimens but becoming less lobed in maturity, margins nearly entire to wavy with individual lobes ca. 5 mm . wide and 2 mm . long, oval to triangular, 3 or 4 cm . long and 2 cm . wide, single or aggregated alternately along lateral branches of limited growth; pollen cones clustered around a shoot that continues growth, peduncle $5-25 \mathrm{~mm}$. long; mature pollen cones to 15 mm . long, 3 mm . in diam.; seed cones clustered on stalks about 1 cm . long or terminal on a slightly modified phylloclad or any possible intermediate condition, small, with 1-3 or more fertile scales, first red when mature, then brown and leathery.

Distribution. Luzon and Borneo to New Guinea, scattered and often common in moist forests and on ridges generally, from 1,500 to 3,200 meters, and occasionally from 900 to 4,000 meters. Map 1 .

Sarawak. Mt. Poi, upper cave, Clemens 20026 j (Ny). Mt. Laiun, Richards

2421 s $1,100 \mathrm{~m}$. (к). Mt. Mulu (Baram), Winkler 512 j 1,200 m. (L), Shockton 2699 s 6-7,000 ft. (к), Anderson 4544 ㅇ $7,000 \mathrm{ft}$. (к, L), Hotta 14743 우 1,600$2,200 \mathrm{~m}$. (L). Mt. Temedu, Hose Mts., Ashton S19025 s (к). Mt. Dulit, Richards 1058 j 1,000-1,230 m. (A, BM, K, L, US), 1628 j $1,230 \mathrm{~m}$. (к), 2476 s 800 m. (A, BM, K, L). Marigan Range, Lawas, Brunig S9984 if 1,000 m. (L). Without loc. Beccari 2391 s (к), 3220 우 (к). Brunei. Mt. Ulak, Ashton BRUN $1033 \mathrm{~s} 4,300 \mathrm{ft}$. (K, L). North Borneo. Jesselton, Kumu Rengis, Wyatt-Smith [?] 71650 ㅇ 80 ft . [sic] (K, L, Us). Penampang, Leaño-Castro 5992 s 6,000 $\mathrm{ft} .(\mathrm{K}, \mathrm{L})$, Clemente 6217 s $5,000 \mathrm{ft} .(\mathrm{k})$. Ranau, Meijer SAN 21968 if 5$6,000 \mathrm{ft}$. (к), Mikil 56277 s $7,000 \mathrm{ft}$. (к), Burgess SAN $25167 \mathrm{~s} 4,500 \mathrm{ft}$. (k). Mt. Kinabalu, Low s.n. ㅇ $8,000 \mathrm{ft}$. (к-holotype), s.n. ô $10,000 \mathrm{ft}$. (к), Gibbs 4088 j $7,000 \mathrm{ft}$. (Вм, к), 4152 o , j $6,000 \mathrm{ft} .(\mathrm{BM}, \mathrm{K}), 4238 \mathrm{~s}$ (ВМ), 4273 우 $9-12,000 \mathrm{ft}$. (BM, K), Clemens 10556 के (A), 10565 우 (A, GH, K), 10654 ㅇ (A), 10957 s (BM), 27930 ㅇ $6,000-13,500 \mathrm{ft}$. (A, BM, K, L, NY), 29328 ㅇ $10,000 \mathrm{ft}$. (A, BM, ILL, K, L, NY), 29743 ㅇ $8-9,000 \mathrm{ft}$. (BM, K, NY), 30029 ㅇ $7,000 \mathrm{ft}$. (A), 30030 ㅇ $10,500 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{Ny}$ ), 31838 o $7,000 \mathrm{ft}$. (A, L), 31927 of $8-9,000 \mathrm{ft}$. (NY), 32459 s (BM, L), $50626 \mathrm{~s}(\mathrm{BM}), 50784$ 우 $7-9,000 \mathrm{ft}$. (A, BM, L), 50797 ㅇ $10,000 \mathrm{ft} .(\mathrm{BM}, \mathrm{L}), 51220 \mathrm{~s}(\mathrm{BM})$, Haviland 1092 우, ô $11,000 \mathrm{ft}$. (A, BM, K, L), Sinclair \& Kadim $9053 \mathrm{~s} 6,950 \mathrm{ft}$. (L), Chew \& Corner RSNB 710 와 $7,500 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{Ny}$ ), $\operatorname{RSNB} 4172$ ㅇ $5,000 \mathrm{ft} .(\mathrm{K}), \operatorname{RSNB} 4824$ 우 $6,000 \mathrm{ft}$. (к), Smythies S10622 ㅇ $9,000 \mathrm{ft}$. (к, L), Wyatt-Smith 80370 s (к), 80371 우 (к, L), Anderson $S 27089$ ô $11,800 \mathrm{ft}$. (к), S27090 아 $11,300 \mathrm{ft}$. (к, L), Meijer SAN 22114 s $4,000 \mathrm{ft} .(\mathrm{k})$, SAN 29271 के $9,700 \mathrm{ft}$. (к, L). Nicholson SAN 17823 우, of $8,800 \mathrm{ft}$. (к, L), Fuchs \& Colenette 21430 if $3,375 \mathrm{~m}$. (к), Carr SFN 27617 s $11,500 \mathrm{ft}$. (BM). Trusmadi Kudat, Mikil SAN 31784 ô (L). Sobong Peak, Lobb (1857) s 4,000 ft. (BM, к). Borneo. W. Region, Bengkajang, Banan, NIFS bb9671 j $1,400 \mathrm{~m}$. (L), bb24777 j 1,200 m. (A, L). B. Raja, Winkler 1036 s $1,600 \mathrm{~m}$. (L). Ulu Kelan, Molengraaf B3477 s (L). Top of Semedum, Hallier 697 ㅇ (A, K, L, Ny). Mt. Palimasan, W. Kutei (Belajan R.), Kostermans 12894 s $700 \mathrm{~m} .(\mathrm{BM}, \mathrm{K})$. Mt. Niapa on Kelai R., Kostermans 21482 क $1,000 \mathrm{~m} .(\mathrm{K}, \mathrm{L})$. Philippines. Luzon: Mt. Panai (Benguet), Gillis 27257 s (A, к, L, US), Merrill 4753 j (к, L, Ny, US), Quisumbing \& Sulit 82404 s $7,700 \mathrm{ft}$. (Ny). Mt. Siñgakalsa (Benguet), Sulit 7669 of $2,500 \mathrm{~m}$, (A, L). Benguet, Alvarez 18364 s (BM). Lepanto Dist., Curran 10957 of (к, L, Ny, US). Mt. Data, Steiner 2150 j 2,200 m. (L). Mt. Pukis (Bontoc), Ramos \& Edaño 37757 रे (A, US). Mt. Tabuan-Buan (Cagayan), Ramos 77401 우 5,800 ft. (к, ny). Center, Loher 4851 s (k), 5203 오 (A, K, ny, Us). Mindoro: Mt. Halcon, Merrill 5788 s ( $\mathrm{K}, \mathrm{Ny}$, Us). Mt. Dulangan, Whitehead (1896) s 5,000 ft. (BM). Mindanao: Mt. Katanglad (Bukidnon), Sulit 10052 ㅇ 2,200 m. (A, L), 10124 of $2,300 \mathrm{~m}$. (A). Mt. Candoon (Bukidnon), Ramos \& Edaño 38738 오 (A, US). Kaatoan Chinchona (Bukidnon), Britton 439 ㅇ 1,380 m. (L). Mt. Apo (Davao), Elmer 11463 S (A, BM, FI, K, L, NY, US, Z), Clemens 15675 j (A, NY), Mearns \& Hutchinson 4679 s (L). Mt. KcKinley, Kanehira 2676 j (Ny). Celebes. Mt. Wuka Tampai, Palu (Menado), NIFS bb15154 ㅇ $2,500 \mathrm{~m}$. (L). Parigi Lombok (Menado), NIFS bb15026 s 1,100 m. (L). Sawito (Enrekang), NIFS bb20782 s $1,750 \mathrm{~m}$. (L). Mt. Tahole, Labu (Malili), Burki bb24089 of $1,500 \mathrm{~m}$. (L). Porehu (Malili), NIFS bb19564 ㅇ 1,500 m. (A). Makale-Toloko (Manggala), NIFS bb20270 s 1,200 m. (A, L). Moluccas. Batjan, de Haan bb23236 s 2,199 m. (L). Obi, de Haan bb23812 s 700 m. (L). Buru, NIFS bb21509 s 800 m. (L), Binnendyk s.n. j (K, L). Middle Ceram, G. Sofia, Stresemann $133 \mathrm{~s} 2,200 \mathrm{~m}$. (L). New Guinea. Vogelkop: Mt. Nettoti, van Royen 3873 s $1,960 \mathrm{~m}$. (L), van Royen \& Sleumer 7403 s 1,750 m. (к, L), Versteegh BW 10407 s $1,700 \mathrm{~m}$.
(L). Neentjapaki Mts., Kebar Valley, Kalkman BW 6373 s 1,090 m. (L). Adjar, Kebar Valley, Koster BW 6887 \& 1,110 m. (L). Tobie Mts., Kebar Valley, Schram BW 7972 s 720 m. (L). Anggi Lakes, Gibbs 5992 ㅇ 7-9,000 ft. (BM, к), Versteegh $B W 248$ s $2,000 \mathrm{~m}$. (A, к, L), $B W 253$ ㅇ $2,100 \mathrm{~m}$. (A, K, L), $B W$ 281 s (A, L), Kanehira \& Hatusima 13704 s (A), 14096 s (A), Stefels BW 2008 j $1,875 \mathrm{~m}$. (L) , BW 2010 s $1,860 \mathrm{~m}$. (L), BW 2031 s $2,200 \mathrm{~m}$. (L). Koebri Ridge, Gibbs 5657 s 8,500-9,000 ft. (BM, к). Ransiki, Sioriep, Mangold BW 2262 s $1,200 \mathrm{~m}$. (к, L). Mt. Mundi (Ransiki), Mangold BW 2254 s $1,900 \mathrm{~m}$. (L). Western Half: Mt. Genofa (E. of Arguni Bay), Salverda bb22564 s 750 m. (L), Versteegh BW 7596 오 1,000 m. (L). Wissel Lakes, Eyma 4954 ô $1,750 \mathrm{~m}$. (A, K, L), 5228 ô (A, K, L), 5371 오 (A, K, L), Versteegh BW 3009 오 1,750 m. (A, L), Johannes BW 3262 s 1,750 m. (L), Vink \& Schram BW 8764 ㅇ 1,500 m. (L), BW 8945 s 1,850 m. (L). Nassau Mts., Docters v. Leeuwen 10906 s $2,600 \mathrm{~m}$. (A, K, L). Mt. Doorman (Mamberamo R. Region), Lam 1628 오 $3,250 \mathrm{~m}$. (L), 1647 ㅇ $3,500 \mathrm{~m}$. (L), 1742 ㅇ $3,250 \mathrm{~m}$. (L), $1984 \mathrm{~s} 2,560 \mathrm{~m}$. (L). Lake Habbema, Brass 9058 of $3,225 \mathrm{~m}$. (А, BM, к, L), 9090 오 (A, BM, K, L), 10528 ㅇ $2,800 \mathrm{~m}$. (A, BM, K, L), Brass \& Meyer-Drees 10432 우 $3,225 \mathrm{~m}$. (A, L), Brass \& Versteegh 10446 ㅇ $2,840 \mathrm{~m}$. (A, BM, L), 10446 A ${ }^{\circ} 3,200 \mathrm{~m}$. (A, BM, L). Barnhard Camp, Brass \& Versteegh 11931 if $1,850 \mathrm{~m} .(\mathrm{A}, \mathrm{BM}, \mathrm{K}, \mathrm{L}), 12523$ $\mathrm{s} 1,100 \mathrm{~m} .(\mathrm{A}, \mathrm{BM}, \mathrm{L}), 12523 \mathrm{~A}$ 오 $1,150 \mathrm{~m} .(\mathrm{A}, \mathrm{K}, \mathrm{L}), 13520$ 아 $900 \mathrm{~m} .(\mathrm{A}, \mathrm{BM}, \mathrm{L})$, 13520 A ㅇ (A, L), Brass 12191 ¢ $2,100 \mathrm{~m}$. (A, L). Cycloop Mts., van Royen 3721 s $1,560 \mathrm{~m}$. ( L ), van Royen \& Sleumer s.n. s $1,700 \mathrm{~m}$. (L). Mt. Antares, Star Mts., Kalkman 4439 오 $2,360 \mathrm{~m}$. (BM, L), 4539 ㅇ $3,300 \mathrm{~m}$. (L). Terr. New Guinea: Lordberg (Sepik Region), Ledermann 9872 of 1,000 m. (K, Lisotypes of Phyllocladus major). Wabag-Maramuni Road, Saunders 1025 s $10,000 \mathrm{ft}$. (L). Wankl (Mt. Hagen), Hoogland \& Pullen $5871 \mathrm{~s} 7,600 \mathrm{ft}$. (A, bM, K, Us). Mt. Wichmann, Pulle 982 s 2,500 m. (к, L), 1018 s (к, L), 1042 ot $3,100 \mathrm{~m}$. (A, K, L). Upper Minj Valley, Pullen 273 A j $9,000 \mathrm{ft}$. (A, L). Al River Mts. (Nondugl), Womersley NGF 5351 ㅇ $7,000 \mathrm{ft}$. (A, BM, K, L). Mt. Kabanunt, Sirimbki, Walker ANU 859 ㅇ 9-9,500 ft. (A, K, L), 859 A j 9,500 ft. (A, K, L). Chimbu, Cavanaugh NGF 3333 of (K). Waimambuno (Chimbu), Saunders $824 \mathrm{~s} 9,000 \mathrm{ft}$. (A, BM, K, L, US). Mt. Wilhelm, Stauffer $5651 \mathrm{~s} 2,600$ m. (к, L, z). Lake Inim, Flenley ANU $2177 \mathrm{~s} 8,300 \mathrm{ft} .(\mathrm{K}, \mathrm{L})$. Ogeramnang, Clemens $4942 \mathrm{~s} 6-7,000 \mathrm{ft}$. ( $\mathrm{A}, \mathrm{z}$ ), 5117 A ㅇ $6,000 \mathrm{ft}$. (A). Samanzing, Clemens 9384 के $7-8,000 \mathrm{ft}$. (A), 9549 के $8-9,000 \mathrm{ft}$. (A). Mt. Enggom, Sarawaket Range, van Royen NGF 16182 ô $11,000 \mathrm{ft}$. (к, L). Mannasat, Cromwell Mts., Hoog-
 Kaindi (Bulolo), Brass 29692 ㅇ 2,150 m. (A, K, L, Ny, us), Millar \& Womersley NGF $12255 \mathrm{~s} 7,000 \mathrm{ft} .(\mathrm{A}, \mathrm{K}), M c$ Veagh $N G F 7580$ 우 $3,000 \mathrm{ft}$. (A, BM, K, L), de Laubenfels P481 ô 6,500 ft. (A, K, L, RSA, SBT), P481A j (A), Toropai NGF 17153 \& $6,900 \mathrm{ft} .(\mathrm{K}, \mathrm{L})$, Havel \& Kairo $N G F 17341$ ㅇ $7,000 \mathrm{ft}$. (k). Wau-Salamaua Road, Millar NGF 22785 ㅇ $6,400 \mathrm{ft}$. (к). Mt. Amungwiwa, S. of Wau, Womersley NGF 17946 s $11,400 \mathrm{ft}$. (L). Wagau, Buang Region, Womersley NGF 17902 s $4,500 \mathrm{ft} .(\mathrm{k}, \mathrm{L})$. Papua: Mt. Giluwe, Schodde 2014 ㅇ $8,800 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}$ ). Mt. Tafa (Cent. Div.), Brass 4035 s (A, NY). Murray Pass, Wharton Range, Brass 4578 s $2,840 \mathrm{~m}$. (A, BM, NY), 4584 우 (A, K, L, NY, US). Mt. Obree, Owen Stanley Range, Lane-Poole (1923) s 7-9,000 ft. (A, K). Mt. Dayman, Maneau Range, Brass 22453 ㅇ 2,230 m. (A). Mt. Maneao, Crutwell 519 s $7,500 \mathrm{ft}$. (к). Mt. Mon [Mau?], Crutwell 896 j 6,800 ft. (к). Mt. Vinevo, Goodenough, Crutwell 1423 s $7,000 \mathrm{ft}$. (k).
Illustration. Hooker, f. Icon. Pl. t. 889. 1852.


Maps showing distribution of: 1, Phyllocladus hypophyllus Hooker f.; 2, Dacrydium elatum (Roxburgh) Wallich (dots west of line), D. novo-guineense Gibbs (dots east of line), D. nausoriensis de Laubenfels, known only from the Fiji Islands; 3, D. pectinatum de Laubenfels (dots west of line), D. nidulum de Laubenfels (dots east of line), D. balansae Brongniart \& Gris, known throughout New Caledonia, and $D$. cupressinum Solander ex Lambert, known from New Zealand.

In addition to its completely disjunct distribution, Phyllocladus hypophyllus can be differentiated from all other species of the genus by its distinctly larger phylloclads. In other species the larger structures are deeply lobed and transitional to branch systems, those without deep lobes are less than 20 mm . wide or 25 mm . long. Phyllocladus hypophyllus is unique also in frequently having the seed cones terminal rather than lateral on the phylloclads, and in having peduncles on both pollen and seed cones up to twice the length observed in other species. The two species with intermediate sized phylloclads approaching the lower limit of those of $P$. hypophyllus are P. glaucus and P. aspleniifolius, both of which share the glaucous habit with $P$. hypophyllus. The former has seed cones with numerous fertile scales and the latter has particularly small and nearly sessile pollen cones. The species $P$. major and $P$. protractus have been differentiated from P. hypophyllus on the basis of the shape of the cladodes, the position of the seed cone, and by their glaucous aspect. These differences, however, are found within local populations related to age of the tree or even on different parts of the same specimen.
Dacrydium Solander ex Lambert, Descr. Genus Pinus 1: Appendix 93. 1807. Type species: Dacrydium cupressinum Solander ex Lambert.

> Lepidothamnus Phil. Linnaea 30: 730. 1860. Type species: Lepidothamnus fonkii Phil. [Dacrydium fonkii (Phil.) Benth.].

Shrubs and trees varying considerably in stature; juvenile leaves awlshaped (falcate needles), longer than the adult, or in some species bifacially flattened and linear; adult leaves quite variable among the species from scale leaves to leaves resembling the juvenile needles and with either gradual or abrupt transitions uniting the different forms during their ontogeny; dioecious (or rarely monoecious in some New Zealand species); pollen cones cylindrical, terminal, or lateral and sessile, or both; seed cones much reduced, with bracts hardly modified from foliage leaves, often becoming fleshy when ripe, terminal, often on a short lateral branch; ovules inverted on bracts in a nearly terminal position and partly covered by an epimatium; seeds usually becoming erect, projecting well beyond the apex of the modified cone, occasionally occurring in pairs or three together, sometimes surrounded by the leaf-like extremities of the cone bracts, oval with the micropyle forming a small tip, usually somewhat flattened, on some species remaining inverted and covered by the fertile scale.

The genus Dacrydium occurs in a wide range of temperature and soil conditions but rarely in anything less than a very moist climate. It is readily divisible into two subgroups based on the internal morphology of the wood, leaves, and pollen (Tengnér, 1965). In one of the groups, called by Florin (1931) Group C, the adult leaves are more or less overlapping, broad, bluntly keeled scales (in one species, a prostrate alpine shrub, plants with juvenile type short flat leaves sometimes are fertile). The other group, called Group B, lacks scale leaves in all but two species where the scale is narrowly and sharply keeled and strongly appressed.

The seeds in this group always become more or less erect, while in Group C some species have inverted mature seeds covered by the fertile scale. Group C is entirely extra-tropical and will not be treated here. Group B is primarily tropical, the two groups overlapping in New Zealand where most of the Group C species are found. In Group B the juvenile leaves are scarcely distinguishable between the various species, being lanceolate, slender, and bifacially flattened on the seedling but soon becoming strongly keeled and awl-shaped. For the most part, the seeds are also very similar throughout, so that the species are distinguished primarily by the form of the seed and pollen cones, and by the adult leaf form. Four common leaf types occur, one with fairly short needles (25 mm .) changing gradually from the juvenile form (cupressinum, balansae, nidulum, pectinatum), a longer type with more flexible needles (beccarii), a type with narrow, flat, and lanceolate leaves (xanthandrum), and one with scale leaves changing abruptly from the juvenile needles (elatum, novo-guineense). In addition, there are a number of local species, usually with distinctly bifacially flattened leaves and, in most cases, rather rare. Most of the species are too small in growth form or are too rare to be useful, but a few, as $D$. cupressinum, are valuable lumber trees.

## Key to the Species of Dacrydium

1. Trees or prostrate shrubs with adult leaves broad, imbricate, bluntly keeled scales (Group C).
2. Trees or bushes with adult leaves narrow, appressed, sharply keeled scales or longer spreading leaves (Group B).
3. Abrupt change between juvenile and adult leaves, which are minute (not more than 1.5 mm . long).
4. Bracts in the fertile area similar to scale-like foliage leaves.
5. D. elatum.
6. Bracts in the fertile area distinctly longer than the foliage leaves or scales.
7. Seeds and pollen cones not small; foliage leaves scale-like.
8. D. novo-guineense.
9. Seeds and pollen cones small; foliage leaves spreading.
10. D. nausoriense.
11. Gradual change from juvenile to adult leaves, which are at least 2 mm . long.
12. Bracts in the fertile area not surpassing the epimatium and not longer that the foliage leaves.
13. Microsporophylls narrowly lanceolate; leaves thick ( 0.6 mm .) straight.
(D. cupressinum).
14. Microsporophylls long triangular; leaves less than 0.4 mm . thick, curved upwards at the tip.
15. Slender, linear leaves with the tip turned upwards.

5a. D. pectinatum var. pectinatum.
7. Thick, sharply tapering and spreading leaves.

5b. D. pectinatum var. robustum.
5. Bracts in the fertile area distinctly longer than the epimatium and, where the foliage leaves are not long, distinctly elongated by contrast.
8. Bracts in the fertile area distinctly longer than the foliage leaves of the subtending branch; microsporophyll triangular.
9. Bracts, in the fertile area, and foliage leaves strongly keeled, triangular or quadrangular in cross section.
10. Developing seed extending well beyond the elongated bracts of the fertile area; foliage leaves not more than 0.8 mm . wide.
11. Leaves approximately as thick as wide, tip more or less blunt and not incurved.

6a. D. nidulum var. nidulum.
11. Leaves noticeably wider than thick, tip distinctly armed with a slight prickle, generally incurved and crowded. ....6b. D. nidulum var. araucarioides.
10. Developing seed completely surrounded by elongated bracts, the tip protruding slightly on maturity; foliage leaves robust, more than 1.0 mm . wide.
12. Pollen cones 2.0 mm . in diameter; leaves curved upwards but not inwards, markedly tapering, quadrangular in cross section. .......... 7. D. balansae.
12. Pollen cones $2.5-3.0 \mathrm{~mm}$. in diameter; leaves strongly incurved, linear, axial surface concave towards the apex. ................ 8. D. araucarioides.
9. Bracts in the fertile area and foliage leaves distinctly flat, more than twice as wide as thick.
13. Seed and pollen cone small; leaves lanceolate, $3-4.5 \mathrm{~mm}$. long.
9. D. lycopodioides.
13. Seed and pollen cone not small; leaves linear, 4-7 mm. long.
10. D. spathoides.
8. Bracts in the fertile area no longer than the foliage leaves of the subtending branch; microsporophylls elongated, lanceolate.
14. Fertile bract not surpassing the mature seed, leaves $5-10 \mathrm{~mm}$. long.
15. Pollen cone $20-25 \mathrm{~mm}$. long by $5-7 \mathrm{~mm}$. in diameter; leaves less than 0.8 mm . wide.
16. Seed cone terminal on ordinary foliage branches; mature seed surrounded by bracts. 11. D. magnum.
16. Seed cone terminal on shoots with reduced leaves; seed well exposed when mature.
17. Leaves quadrangular or triangular in cross section, imbricate.
18. Leaves uniform, more than 5 mm . long, at least ten times as long as wide.
19. Leaves spreading outward.

12a. D. beccarii var. beccarii.
19. Leaves incurved and compact.

12c. D. beccarii var. rudens.
18. Leaves variable, sometimes less than 5 mm . long, less than eight times as long as wide. 12b. D. beccarii var. subelatum.
17. Leaves twice as wide as thick, spreading at nearly right angles to the stem.
13. D. xanthandrum.
15. Pollen cone $20-25 \mathrm{~mm}$. long by $5-7 \mathrm{~mm}$. in diameter; leaves at least 1.0 mm . wide.
14. D. gibbsiae.
14. Fertile bract much longer than the seed, leaves $12-20 \mathrm{~mm}$. long.
20. Leaves quadrangular in cross section, linear.
15. D. guillauminii.
20. Leaves flat, lanceolate.
16. D. comosum.
2. Dacrydium elatum (Roxburgh) Wallich, London Jour. Bot. 2: 144. 1843. ${ }^{2}$

Juniperus elata Roxburgh, Fl. Indica 3: 838. 1832. Lectotype: Wallich 6045, Malay, Penang.
Dacrydium junghuhnii Miquel, Pl. Junghuhn, 1: 4. 1851. Type: Junghuhn s.n., Sumatra.

Dacrydium pierrei Hickel, Bull. Soc. Dendr. France 76: 74. 1930. Lectotype: Pierre 1396, Cochin China, Phu Quoc Island. ${ }^{3}$
Tree to 40 m ., much branched with masses of erect twigs forming a dome-like crown; bark furrowed and flaky, reddish-brown, inner bark pink; juvenile leaves acicular, to at least 12 mm . long, gradually becoming shorter and more robust before changing abruptly on young trees, about $6-8 \mathrm{~mm}$. long, sharply keeled on four sides and nearly straight, spreading, acute; mature foliage branches cord-like, $1-2 \mathrm{~mm}$. in diam., covered with imbricate scales which are acute and sharply keeled, 1-1.5 mm . long by $0.4-0.6 \mathrm{~mm}$. wide, occasionally passing through a semi-adult or transitional stage of short spreading leaves about 1.5 mm . long; branches with juvenile leaves occasionally fertile; pollen cones terminal, usually on short lateral branches, thus sometimes almost lateral, cylindrical, $4-5 \mathrm{~mm}$. long and 1.2 mm . wide; microsporophylls triangular, acute; seed cone terminal, generally on short lateral branches, bracts of the cone becoming slightly enlarged, red and fleshy when mature; the solitary naked seed becomes almost erect, tapering to a blunt apex, reaching $4-4.5 \mathrm{~mm}$. in length.

Distribution. In humid mountain forests from north central Thailand and Tonkin to central Sumatra and Sarawak, from 500 to 1,700 meters in elevation or even down to sea level where suitable conditions exist. Map 2.

Thailand. North Central: Loei, Phu Krading, Tham Nam, Royal Forest Dept. 3631 j, 1,045 m. (US), Kerr 8727 j (к), 8727 A 우 (к), 8727 B ô (к), Larsen 2263 j 1,300 m. (a). Without loc., Smitinand 19058 j 1,200 m. (K). Central: Nakhaun Nayok, Phengkhlai 691 ô, j (к, L). Cambodia. Plateau overlooking Gulf of Siam, Showe (1927) s, j 3,000 ft. (BM). North of Kampot, Poilane 14707 ㅇ (Ny). Near Komplon (Phnom Penh), Bejoud 717 ㅇ (ILL). Without loc., Pierre 19074 s (к). Tonkin. Than Moi, Balansa 596 ô, j (ill, k). Annam. Summit Mt. Bani, near Da Nang, Clemens 4280 j (к, ny, US). Bana, near Tourane, Poilane 1539 s, j $1,200 \mathrm{~m}$. (Ny-syntype of D. pierrei), 7095 ㅇ(A-

[^1]syntype of $D$. pierrei). Kontum Prov., Poilane 33351 s $1,200 \mathrm{~m}$. (ill). Nhatrang, Poilane 25 j (A-syntype of $D$. pierrei), 3455 ㅇ (A-syntype of $D$. pierrei), 3782 ㅇ (A, K-syntypes of $D$. pierrei), 4411 if (A-syntype of D. pierrei). Cochin China. Phu Quoc Island, Gulf of Siam, Pierre 1396 ô, j (A, K, Ny-isotypes of $D$. pierrei), Harmand (Godefroy) 901 ô (A-syntype of D. pierrei). Without loc., Poilane 32825 ô (ILL), Godefroy-Lebeuf s.n. ̂̀ (к). Malaya. Thailand border (Botong), G. Ina, Kerr 7554 s, j (k). Penang, Wallich 6045 s (вм-lectotype of Juniperus elata; K-isotype), Sinclair 39094 s, j (к, L), Walker 70 j ( K ), Maingay $2262 \mathrm{~s}(\mathrm{~K}), 2753 \mathrm{~s}$ ( K ), Curtis 2880 s , j (к). Perak, Ernst $1213 \mathrm{~s}, \mathrm{j}$ (z). G. Butu, Wray 1028 j (k), $3899 \mathrm{~s}, \mathrm{j}$ (k). Pahang, G. Tahan, Haniff \& Nur s.n. ô (к), SFN 7959 s , j $5,500 \mathrm{ft}$. (А, K), Wray \& Robinson $5354 \mathrm{~s} 3,300 \mathrm{ft}$. (к), 5380 j (к). Pahang, G. Lesong, Wakau 4155 j (к). Jahore, Mt. Ophir, Maingay 1503 오 (FI, GH, K, L), Moxon s.n. S (L). Sumatra. Between Tapanuli and Silindong, Junghuhn s.n. j $2,000 \mathrm{ft}$. (L-holotype of D. junghuhnii). Pajakumbuh, W. Taram, Meijer 6938 ô, j 500-1,000 m. (к, L), 7040 오 (L). Poya Kombo, Teysmann 21647 ô (K), s.n. s (K). Without loc., Praetorius s.n. j (L). Sarawak. Merurong Plateau (Bintulu), Brunig S9991 s 750 m. (L). Mt. Dulit, Richards 1962 s 1,250 m. (BRI, K, L, US). Between Biak R. and Sut, Pickles 2991 ô $2,360 \mathrm{ft}$. (L, US). Lawas, Brunig S10673 ô, j 900 m. (L). Borneo. Without loc., De Vriese s.n. j (L).

Illustrations. Ridley, H. N. Fl. Malay Peninsula t. 227. 1925. Corner, E. J. H. Gard. Bull. Straits Settlements 10:t.5. 1939.

Dacrydium elatum differs from D. novo-guineense in the form of the female cone, in the form of the juvenile leaves, size of the pollen cone, size of the mature tree, and in its occurrence generally at lower elevation. Specimens of $D$. pectinatum have been much confused with $D$. elatum because the pectinatum foliage is similar to the juvenile foliage of $D$. elatum but, the leaves of $D$. pectinatum are, in fact, shorter and distinctly curved. The known range of these two species overlaps only in Sarawak. The name elatum has further been applied to almost any uncertain Dacrydium specimen from Borneo to the Fiji Islands. Hickel described D. pierrei, contrasting it with $D$. beccarii, which he mistook for $D$. elatum.
3. Dacrydium novo-guineense Gibbs, Contrib. Phytogeography and Flora of the Arfak Mountains 78. 1917. Lectotype: Gibbs 5648, New Guinea, Arfak Mountains.
Tree to about 10 m . with branches rigidly ascending into a rounded crown; juvenile leaves acicular, spreading and incurved, lanceolate, acute, keeled on the back, to 7 mm . long by 0.7 mm . wide but variable in size, changing abruptly to the adult form, occasionally passing through a semiadult or transitional stage of short spreading leaves about $1.0-1.5 \mathrm{~mm}$. long; mature foliage in imbricate scales, acute and sharply keeled, 1.01.5 mm . long by $0.4-0.6 \mathrm{~mm}$. wide; foliage branches $1.0-2.0 \mathrm{~mm}$. in diameter, penultimate branches becoming larger; pollen cones terminal, usually on short erect lateral branches, cylindrical, 8 mm . long, microsporophylls triangular; seed cones terminal on short curved lateral branches, bracts long and spreading, reaching 3 mm . at the cone apex,
the whole cone becoming red and fleshy when mature, the single apical seed becoming almost erect and extending well beyond the cone bracts, 5 mm . long, edges slightly keeled, tapering to a small blunt apex.

Distribution. In open to mossy forests, often on ridge tops from 1,300 to 2,750 meters in elevation, occasionally lower. Locally common but apparently localized; from Obi and the mountains of western New Guinea at least as far as the Western Highlands of the Territory of New Guinea. The collections from the Celebes are tentatively included here until it can be determined whether these represent Dacrydium elatum or $D$. novoguineense. MAP 2.

Celebes. Manado, Poso, Eyma 1623 s 1,700-1,800 m. (L), 3642 ô (L). Masamba, Kuniapu, NIFS bb24964 s $1,500 \mathrm{~m}$. (L). Masamba, Omboan, NIFS $b b 26288$ j $1,800 \mathrm{~m}$. (L). Enrekang, NIFS bb20786 j $1,900 \mathrm{~m}$. (L). Moluccas. NW. Buru, Stresemann 395 s, j 1,800-2,000 m. (L). Buru, Martin s.n. j (L). Obi, de Haan bb23813 s 700 m . (L) , bb23814 s, j (L). New Guinea. Vogelkop: Tamrau Mts., Van Royen \& Sleumer 7219 s, j $2,000 \mathrm{~m}$. (L). Kebar Valley, Van Royen 3857 s, j $1,980 \mathrm{~m}$. (L). W. of Mt. Nettoti, Van Royen \& Sleumer 7948 우 $2,100 \mathrm{~m}$. ( $\mathrm{K}, \mathrm{L}$, LAE), 7948 B j (L). Arfak Mts., Gibbs 5648 와 $9,000 \mathrm{ft}$. (BM-lectotype; K-isotype), $5508 \mathrm{~s}, \mathrm{j} 7,000 \mathrm{ft}$. (вм, K-syntypes), Kanehira \& Hatusima 13518 s $2,000 \mathrm{~m}$. (A), Gjellerup 1032 s, j $1,800 \mathrm{~m}$. (L). Anggi Lakes, Versteegh 256 ㅇ $2,100 \mathrm{~m} .(\mathrm{L}), 262$ ㅇ (L), 269 oे (L), Stefels BW 2015 j 1,860 m. (L), BW $2033 \mathrm{~s}, \mathrm{j} 2,100 \mathrm{~m}$. (L). Western Half: Wissel Lakes, Eyma 4422 $\mathrm{s}, \mathrm{j} 1,750 \mathrm{~m} .(\mathrm{A}, \mathrm{K}, \mathrm{L}), 4519$ 와 $1,760 \mathrm{~m} .(\mathrm{A}, \mathrm{K}, \mathrm{L})$, Vink \& Schram BW 8746 s $1,820 \mathrm{~m}$. (L). Hellwig Mts., Pulle 663 ㅇ $1,300 \mathrm{~m}$. (L), $966 \mathrm{~s} 2,600 \mathrm{~m} .(\mathrm{K}, \mathrm{L})$. Barnhard Camp, Brass \& Versteegh 11967 of 1,520 m. (A, BRI, K, L), 12507 j $2,100 \mathrm{~m}$. (a, bri, L). Territory of New Guinea: Western Highlands, Mt. Hagen, Cavenaugh NGF $3337 \mathrm{~s}, \mathrm{j}$ (A, BRI, L). Tagen R., Jimmi Valley, Womersley \& Millar NGF 7680 ㅇ $4,300 \mathrm{ft}$. (A, BRI). Minj-Jimmi Divide, Robbins 598 $\hat{\delta}, \mathrm{j} 6,500 \mathrm{ft}$. (A, BRI, K, L, US). Nondugl, Womersley NGF 4420 우, j (A, BRI, K, L). Papua: Sibium Range, Pullen 5930A j (L).

Illustration. Gibbs, L. S. Contrib. Phytogeography and Flora of the Arfak Mountains, t. 3. 1917.

Being one of the scale-leaved species of Dacrydium, D. novo-guineense cannot be distinguished in the sterile form from $D$. elatum from which it differs in the elongated bracts of the seed cone and to a lesser extent in the form of the juvenile leaves and the size of the pollen cone. Juvenile specimens can often be separated from $D$. beccarii, with whose range it overlaps, by their coarser and less dense growth. From D. nidulum the juvenile leaves differ in their variable size including, for the most part, greater length. The rapid change from juvenile to adult form is so striking and comes when the tree is yet quite small so that collectors generally include mature leaf forms when dealing with $D$. novo-guineense. The rigid ascending branches are another distinctive character.

## 4. Dacrydium nausoriensis de Laubenfels, sp. nov.

Arbor ad 25 m . alta, ramosissima. Folia plantarum iuvenilis acicularia, ad 9 mm . longa, ad formam adultam abrupte convertentes; folia plantarum


Figure 1. a, Dacrydium nausoriensis de Laubenfels, portion of the holotype, de Laubenfels P302 (A), enlarged; b, D. pectinatum de Laubenfels var. pectinatum, portion of the isotype, Nicholson SAN 17292 (L), enlarged; c, D. pectinatum, var. robustum de Laubenfels, portion of the holotype, Meijer SAN 37908 ( L ), enlarged; b and c are at same magnification.
adultarum parva, patula, acuta, dorsaliter carinata, densa, 1 mm . longa, 0.4 mm . lata. Strobili masculi cylindracei, terminales vel laterales, saepe utroque, parvi (?), ad 2.5 mm . longi. Strobili feminei ad apicem ramulorum saepe brevi; folia ad basem seminis longiora, ad 2 mm . longa; semen protrudendum, $3.5-4 \mathrm{~mm}$. longum. Holotypus: de Laubenfels P302 (A), Fiji, Nausori Highlands. Fig. 1a.

Distribution. In slightly open forest on the leeward sides of the large islands of Fiji and apparently of limited extent.

Fiji. Vitr Levu: Nausori Highlands, de Laubenfels P302 ㅇ $1,900 \mathrm{ft}$. (Aholotype; K, rSA, sBT-isotypes), P303 j (A, RSA, SBT), P304 iे (A, RSA, SBT), Damanu NH19 우 (к), NH23 of (к), Johns 2 io ( k ), Kuruvoli 13326 아 (k). Vanua Levu: Lambassa, Sarava, Damanu L14 s (k), Anon. FD832 \& 400 ft . (к).

The species of Dacrydium with sharp scale-leaves, changing abruptly from juvenile to adult form ( $D$. elatum and $D$. novo-guineense) stand apart from the other species, with $D$. nausoriensis representing a somewhat transitional position. The abrupt change from fine juvenile needles to the more robust and very short adult leaves is in accord with the scale-leaved species, while the still spreading orientation is the common condition for other species. Occasional specimens of $D$. elatum and of $D$. novo-guineense have transitional leaves abruptly marked off from the juvenile leaves and closely resembling the adult leaves of $D$. nausoriensis. The bark of this new species is virtually the same as in all other species of the group, with large thick flakes, fibrous and brown within but with a tough smooth surface generally well supplied with lenticels and weathering gray. The seeds are also of the usual type showing a slight marginal keel and becoming a rich brown color. The pollen cones seen may not be fully grown.
5. Dacrydium pectinatum de Laubenfels, sp. nov.

Arbor ad 40 m . alta, ramosissima; cortex canus vel rufulus; folia brevia, oblique adscendentia, patentia pectinatum, apice paulo incurva, dorsus carinata, $2-5 \mathrm{~mm}$. longa, $0.4-0.8 \mathrm{~mm}$. lata (iuvenilis ad 20 mm . longa). Strobili masculi cylindracei, terminales, $9-12 \mathrm{~mm}$. longi, 2 mm . lati. Strobili feminei ad apicem ramulorum, saepe ramulorum brevium; folia ad basis parviora; folia strobilorum sub semine maturo parva, crescentes carnosa rubra; 1-2 folia ultima fertilia. Semen 4.5 mm . longum, non tegens foliis strobilorum. Holotypus: Nicholson SAN 17292 (A), North Borneo, Sandakan. Figs. 1b and 2.

The short bracts in the fertile area not even surpassing the epimatium and not longer than the foliage leaves, distinguish this new species from all but two others, one of which, Dacrydium elatum has distinctly smaller pollen cones and scale-like foliage leaves abruptly marked off from the juvenile leaves, while the second, D. cupressinum, has very elongated microsporophylls and thick straight stubby foliage leaves. The short spreading needles distinguish sterile specimens of $D$. pectinatum from other species with which its range overlaps. Two varieties have been recognized because of rather marked differences in leaf form.

## 5a. Var. pectinatum.

Folia gracilia, linearia, acicularia, 2-5 mm. longa, $0.4-0.6 \mathrm{~mm}$. lata.
Distribution. From Hainan through the Philippines to Billiton Island, at low elevations up to 1,500 meters but mostly below 600 meters. Several specimens are reported from sandy soils. MAP 3.
Hainan. Yaichow, Liang 62041 s (Ny), 62619 j (NY), 62670 여 (Ny, US), 63214 s top of mt. (A, Ny, Us). Hung Mo Mt., Tsang \& Fung LU18100 오 (A, ny), LU18152 오 (A, NY), McClure 18303 j 1,000-1,500 m. (ny). Po-ting, How 72869 ㅇ (A). Five Finger Mt., Chun 1367 j (A), 2089 s (A). Dai Land, Dung Ka, Chun \& Tso 4380 2,400 ft. (A, NY). Chim Fung Mt., Lau 5283 ô (A).


Figure 2. Dacrydium pectinatum de Laubenfels var. pectinatum, photograph of the holotype, Nicholson SAN 17292 (A).

Without loc., How \& Chun 70144 ㅇ $2,000 \mathrm{ft}$. (A, NY, Us), Liang 63693 of (NY, US), 65094 के (A, NY), Wang 33651 s (A, NY), 36532 ô (A, NY), Tang 457 ㅇ (A), Hance 22162 j (Bm). Billiton. NIFS bb32284 ㅇ (A, L), Rossum 122 우 (L), 784 우 (L). Sarawak. Bako National Park ( 20 miles NE. of Kuching), Purseglove $P 5066$ j 400 ft . (к, L), P5553 ô 350 ft . ( $\mathrm{K}, \mathrm{L}, \mathrm{NY}$ ), Brunig S12073 के 120 m . (L), S12074 s 130 m. (L), Sinclair \& Kadim 10318 s (A, K, L), Sing JC/50 s 300 ft . (K), Rashid S9546 s $400 \mathrm{ft} .(\mathrm{L})$, Nicholson $1319 \mathrm{~s} 200-300 \mathrm{ft}$. (Us). Limbang, Brunig S1101 와 $1,400 \mathrm{ft}$. (K, L). Kuching, Beccari 643 j ( $\mathrm{FI}, \mathrm{K}$ ), 644 우 (A, F, K). Mt. Mattang, Beccari 2626 우 (FI, K), 3119 ô (FI). Brunei. Ashton

BRUN 5024 s (k, L). North Borneo. Ranau, Meijer SAN 20951 j 3-4,000 ft. (L). SAN 20952 s $4,000 \mathrm{ft}$. (L), SAN 20970 s 4,200 ft. (K, L). Sipitang, Cuadra A3291 s (A, BRI, к, L), Erdtman SAN 22643 s (к), Meijer SAN 21854 j (L), Beaufort Dist., Sandakan, Nicholson SAN 17292 of 5 ft . (A-holotype; Bri, Lisotypes). Beaufort, Cuadra A1329 s (к), Singh SAN 24336 s (к). Mt. Melian near Kiabau Labuk (Sandakan), Meijer 51586 j $2,500 \mathrm{ft}$. (L). Bulungan, Kostermans 9274 s (bri, L). Without loc., Cuadra A1348 s 400 ft . (к), Melegrito 1575 여 (к), Camber 4009 of $1,500 \mathrm{ft}$. (к), 4010 우 (к), 4011 j (к). Borneo. Singkawang, NIFS bb3903 of 5 m . (L), Sulaiman 2 s ( $\mathrm{K}, \mathrm{L}$ ). Masaran, NIFS bb19869 of 40 m. (L), bb19870 j (L). Karimata Arch., Teysmann 11599 s (L), Mondi 182 s (K, L). Sampit, Buwalda 57 (bb32434) ô 3 m . (L), NIFS bb33046 t 9 m . (L). Upper Mahakam, Taliba, NIFS bb26589 s 600 m . (A, L). Muartewe, middle Barito R., NIFS bb27736 s (L), bb28751 s (A, L), bb28752 j (A, L), bb28753 j (A, L), bb28754 ㅇ (A, L). Kenpai, Hallier 1422 j (L, NY), 2164 j (L, ny), Teysmann 8617 j (L). G. Klam, Hallier 2360 ô (K, L, Ny), 2374 s (L, ny). Samarinda, Posthumus 2175 j (k, L). W. Kutei, Endert 1604 j 20 m. (L). W. Kutei, Mt. Palimasan, Kostermans 12782 j (L). Karran, Müller s.n. s, j (L). Without loc. Korthals $1863 \mathrm{~s}(\mathrm{~K})$, Beccari s.n. s (L). Philippines. Palawan, Mt. Gantung, Edaño 77619 s (Ny). Mindoro, Merritt 8527 j (US), 8528 j (Ny, US). Mindanao: Ramos \& Pascasio 34497 j (A); Mt. Malindang, Morao 6010 앙 1,200-1,400 m. (A) ; Monica (Zamboanga), Pascua 15692 j 1,000 m. (L).

Illustrations. Blume, C. L. Rumphia 3: t. 172B, fig. 1, t. 172C, fig. 2. 1849, as Dacrydium elatum.

The slender leaves of this variety, with more or less parallel margins, distinguish it from variety robustum which, in addition, grows in wet places. Variety pectinatum has foliage which is essentially identical to that of $D$. nidulum var. nidulum, although the majority of the specimens have leaves less than 3 mm . long, whereas $D$. nidulum only occasionally has such short leaves. The form of the seed-bearing structure is the important specific distinction. The bark is brown with loose scaly flakes. The four species, $D$. cupressinum, D. balansae, $D$. nidulum, and $D$. pectinatum must be considered a series of closely related species that are separated geographically.

5b. Var. robustum de Laubenfels, var. nov.
Folia robusta, apicem versus angusta, cuneata, $2-3 \mathrm{~mm}$. longa, 0.60.8 mm . lata, basis $0.6-1.0 \mathrm{~mm}$. crassa. Holotypus: Meijer SAN 37908 (L), North Borneo, Mt. Silam. Fig. 1c.

Distribution. The island of Borneo in mossy forest and in peat swamps, from low elevation to 850 meters.

Sarawak. Kuching, Omar SFN 376 s (LaE). Lawas, Keyangeran, Tagei 1795人 12 ft . (K, L). Without loc., Spurway 376 s (к). Brunei. W. Kayangeran F. R., Brunig 1006 oे (к, L). North Borneo. Weston, Mikil SAN 31985 j (к, L). Mt. Silam, Lahad Datu, Meijer SAN 37908 ㅇ $2,500 \mathrm{ft}$. (K-isotype; L-holotype), Wood SAN 4172 ô, j 2,500 ft. (BrI, K, L). Sipitang, Charington SAN 22299 ㅇ $10-25 \mathrm{ft}$. (L).

The short, spreading, and sharply tapering leaves of this variety give it a distinctive appearance that sets it apart from related taxa. There is often a whitish deposit on the branches. The bark is reddish gray, fissured, and scaly.
6. Dacrydium nidulum de Laubenfels, sp. nov.

Arbor ad 30 m . alta, ramosissima; folia brevia, linearia, oblique adscendentia, dorsaliter carinata, $2-5 \mathrm{~mm}$. longa, $0.4-0.8 \mathrm{~mm}$. lata. Strobili masculi cylindracei, terminales, $9-12 \mathrm{~mm}$. longi, 2 mm . lati. Strobili feminei ad apicem ramulorum, saepe ramulorum brevium; folia ramuliorum fertilium parviora sed folia ad apicem longiora semen cingendum niduliformum; apex seminis maturis protrudendus; 1-2 folia ultima fertilia. Semen 3.5-4 mm. longum. Holotypus: Vink BW 15271 (L), New Guinea, Vogelkop. Fig. 3a.

The widespread specimens of this new species have usually been carelessly labelled Dacrydium elatum which, in the mature form, is quite distinct, although (as is also true of $D$. novo-guineense) the juvenile leaves of $D$. elatum are similar in shape, and range in size from equal to longer. D. nidulum differs from most species in the bracts of the fertile structure which, as they grow on the end of a fertile shoot, whose leaves are often shorter than the usual foliage leaves, are considerably elongated, clasping the growing seed in a protective nest. As the seed grows and becomes almost erect, it protrudes well beyond the tips of its cluster of bracts. Other species with similarly elongated bracts in the fertile area include D. lycopodioides and $D$. nausoriensis, whose bracts are distinctly flattened and whose pollen cones are distinctly smaller, D. spathoides also with flattened bracts and with flat linear leaves, and D. novo-guineense with scale-like foliage leaves.

A wide variety of forest conditions is tolerated by $D$. nidulum from peaty swamps and wet primary forest to light secondary forest, but always in very moist climatic conditions or with a high ground water-table. The feathery seedling leaves gradually shorten and change in form to the adult type. The brown bark exfoliates in thin sheets or rough plates. As might be expected over so large a range, there is some variation in form, particularly in the size of the leaf. Two varieties have been recognized on the basis of contrasting leaf forms and a slight difference in the microsporophylls.

6a. Var. nidulum.
Folia non conferta, patula, acicularia; apice paulo incurva, obtusa. Squama strobilorum masculorum triangularia, imbricata, apice elongata.

Distribution. From Celebes to Fiji, and particularly in the western part of New Guinea from near sea level to 1,800 meters (most collections are below 1,000 meters), and in wet rainforest areas. Map 3.

Celebes. Masamba, Steup bb23045 j 1,700 m. (K, L). Lasurume R. (SE.), El-
bert 3126 j 250-755 m. (L). Sawankudu R. (SE.), Elbert 3726 j 150-497 m. (A). Lampia (Malili), NIFS bb19709 s (A, L). Taparan-masapi (Malili), NIFS bb20535 s 434 m. (A, L). Moluccas. Halmahera, NIFS bb24934 of 450 m . (A, bri, l), Nedi 301 j 600 m. (L). New Guinea. Vogelkop: Segior (L. Ajamaru), Vink BW 15271 if 220 m . (L-holotype; k, LaE, z-isotypes). Tehach (L. Ajamaru), Versteegh BW 7378 if 250-300 m. (L). Ajamaru, Versteegh BW 4985 s 275 m . (L), Vink BW 15249 s 240 m . (L, z). Tobi Mts. (Kebar Valley), Versteegh \& Kalkman BW 5594 ㅇ 900 m. (L, LAE), Sijde BW 5596 s 900 m . (L). Kebar Valley, Koster BW 6885 ㅇ $1,100 \mathrm{~m}$. (L). Japen Is.: Aisau, Iwanggin BW 9225 के $210 \mathrm{~m} .(\mathrm{K}, \mathrm{L}$, LAE). Mariattu, NIFS bb $30321 \mathrm{j} 800 \mathrm{~m} .(\mathrm{A}, \mathrm{L})$, $b b 30475$ s 500 m . (A, L). Without loc., NIFS bb14390 j 150 m . (L). N.W. New Guinea: Rouffaer R., Leeuwen 10280 s 250 m. (A, k, L). Sidoarsi Mts., Schram BW 9271 s 660 m. (L). Bodem R., Lans BW 2373 j 99 m. (L, LAE). Dalman, 45 km . inland from Nabire, Kanehira \& Hatusima 12324 s 400 m . (A). Cycloop Mts.: Versteegh BW 4754 ㅇ 120 m . ( L, LAE), Van Royen \& Sleumer 6246 o 750 m . (K, L, LAE, Z), Koster BW 235 s 80 m . (L), BW 239 s 80 m . (A, K, L), BW 1182 ㅇ $50 \mathrm{~m} .(\mathrm{A}, \mathrm{K}, \mathrm{l})$, Brass $8806 \mathrm{~s} 20-100 \mathrm{~m}$. (A, bri, l). Central New Guinea: Weta-batie, Mangold BW 667 s 205 m . (L). Upper Digul, NIFS bb14519 o 15 m . (к, L). Digul R., Versteegh BW 4891 of cultivated by natives (l, lae). Terr. New Guinea: Sattleburg, Clemens 7954 오 (a), 7954 A j (a), 7907 B j (a). Western Division, Papua: Oriomo R., Brass 5875 of $10-20 \mathrm{~m}$. (A, K, L, NY, US), 5876 우 (A, K, L, NA, NY, US), 5876 j (A, L, NY, US), Hart 5021 s (A, BRI, K, L, US), White \& Gray NGF 10407 ô, j 70 ft. (BRI). EAST Papua: Betw. coast and Owen Stanley Mt., Burke 377 ô (к). N. of Mapo (Milne Bay), Smith NGF 1352 s $2,700 \mathrm{ft}$. (bri, l, LaE). Normanby I., Brass 25573 ô (A, K, L, US), 25482 j (A, L). Fiji. Viti LevU: Reservoir Road, de Laubenfels P312 j (A, K, RSA, SBT), P312a j (A, K, RSA, SBT), P313 j (A, K, RSA, SBT), P315 ô 300 ft . (A, RSA, SBT), Tothill $854 \mathrm{~s}(\mathrm{~K})$. Naitasiri, Gillespie 2142 j 150 m. (к, Ny, US). Namboutini, Anon. FD834 s (к), de Laubenfels P308 s $1,000 \mathrm{ft}$. (A, RSA, SBt), P307 j (A, RSA, SBT). Mt. Korumbamba, Meebold 16529 j summit (к). Near Burreata, Milne 55 (к). Mawata, Kuruvoli \& Parham 13433 s (k). Nandarivatu, A. C. Smith 6244 s $1,250 \mathrm{~m}$. (A, BRI, ILL, K, Us). Mt. Nomama-Mt. Tomanivi, A. C. Smith 5734 j 1,050 m. (ill.). Without loc., Storck 906 ㅇ (A, K), Seemann 573 j ( ), Horne 613 오 (к). Vanua Levu: Drekati, Mead 2003 j (к), 2004 s (к), 2005 s (к). Nanduri, Tothill 553 s (к). Thakaundrove, Mt. Kasi, A. C. Smith 1773 of $300-400 \mathrm{~m}$. (A, K, Ny, us), Tuidrokadroka s.n. ㅇ $300-430 \mathrm{~m}$. (A). Without loc., Stauffer \& Kuruvoli 5841 ㅇ (z), 5842 j (z). Kadavu Is.: Damanu KU19 오 (к), 53 오 (K).

The variety nidulum differs from the variety araucarioides in its more dispersed leaves with blunter and less incurved tips. Not more than the upper third of the leaf is incurved and the leaves are not distinctly wider than thick. Transitional specimens can be found, particularly with the penultimate branches more araucarioid. The ripe cone is said to be brown. The brown bark peels in thin flakes and has lenticels.

6b. Var. araucarioides de Laubenfels, var. nov.
Folia conferta, valde incurva, imbricata, acuta, latiora quam crassa. Squama strobilorum masculorum triangularia, apice non elongata. Holotypus: Versteegh BW 3041 (A), New Guinea, Wissel Lake. Fig. 3b.


Figure 3. a, Dacrydium nidulum de Laubenfels var. nidulum, portion of the holotype, Vink BW 15271 (L) ; b, D. nidulum var. araucarioides de Laubenfels, portion of the isotype, Versteegh $B W 3041$ (L), a and b natural size; c, D. spathoides de Laubenfels, portion of the holotype, Brass 12659 (A), enlarged.

Distribution. At intermediate elevations along the main mountain chain of New Guinea, 1,750-2,770 (rarely down to 750) meters, mostly in peat and swamp forest.

New Guinea. Wissel L.: Versteegh BW 3041 ㅇ (A-holotype; к, L-isotypes), Eyma 4790 우, ô (A, K, L), 5103 रे $1,750 \mathrm{~m} .(\mathrm{A}, \mathrm{K}, \mathrm{L})$. Near Kebo, Vink $\mathcal{G}$ Schram BW 8620 s $1,755 \mathrm{~m}$. (L), BW 8796 s $1,800 \mathrm{~m}$. (L, LAE), BW 8914 우 $1,750 \mathrm{~m}$. (l, Lae). Western Mts.: Mt. Genofa, Salverda bb22571 j $1,000 \mathrm{~m}$. (L), bb22576 s 750 m . (L). Central Mts.: Endarotali, Rappard BW 697 웅 $1,750 \mathrm{~m}$. (L). Mt. Hellwig, Pulle 801 ô $1,450 \mathrm{~m}$. (L). Terr. New Guinea:

Kandep Valley, Robbins 3266 ô $7,500 \mathrm{ft}$. (L, LaE), Flenley ANU 2828 if, j (L). Upper Kaugel Valley, Bowers 188 j (lae). Papua: S. Highlands, 8 miles E. of Mendi, Pullen 2674 s 5,700 ft. (L, LAE), 2680 j (LAE).

The crowded and incurved leaves of Dacrydium nidulum var. araucarioides, which expose only their rounded dorsal surface, are reminiscent of $D$. araucarioides and of the leaves of various Araucaria species. The pollen cones available have sporophylls which are less elongated and less imbricate than is true of related taxa. The gray-brown bark is flaky. The ripe cone is red.
7. Dacrydium balansae Brongn. \& Gris, Bull. Soc. Bot. France 16: 328. 1869. Type: Balansa 1380, New Caledonia, Bourail.

A tree 4 to 12 m . high, sometimes taller; bark in thick brown plates, fibrous within but the surface with a tough smooth cuticle and numerous small lenticels, weathering gray; branching into many small spreading shoots; juvenile leaves fine needles up to 13 mm . long, gradually changing to the adult form; mature foliage leaves thick, strongly tapering from a decurrent base $1-2 \mathrm{~mm}$. wide, spreading and slightly incurved at the blunt tip, strongly keeled, particularly on the dorsal side, margins sharp, 3-4.5 mm . long, on branches bearing fertile structures somewhat smaller, often slightly glaucous; pollen cones cylindrical $8-15 \mathrm{~mm}$. long, 2 mm . in diam., terminal, often on short branches, or lateral, or both together; microsporophyll triangular, acute but not elongated; seed cones terminal on long or short branches with somewhat reduced leaves for as much as 2 cm . below the cone; often with a twist below the fertile area; seed cone scales elongated, $3.5-4 \mathrm{~mm}$. long, not more than 1 mm . wide, not tapering, one or rarely two of the uppermost fertile; ovule at first inverted and buried among the cone scales but gradually becoming nearly erect; mature seed spreading the cone scales apart but more or less surrounded and emerging slightly if at all, oval-elongated, wider than thick, tapering to a blunt tip with marked lateral keels, up to 5 mm . long, 3.5 mm . wide.

Distribution. Throughout New Caledonia in drier forests, generally over serpentine at low elevation (up to 900 meters), and occasionally in more moist forest.

New Caledonia. Valley of Amona near Wagap, Vieillard 3262 ô (GH, K, ny, P, z). Mt. Koniambo-Koné, Däniker 909 s 400-600 m. (p, z). Mt. Paéoua, McKee 17028 s 600-900 m. (P). Mt. Boulinda above Oua Nepoua, McKee 17194 s 800 m. (p). Above Houailou, Me Maoya, McKee 9891 s $800-900$ m. (P). Below Téné near Bourail, Balansa 1380 우 (P-holotype; BM, K-isotypes). Kuana R. E. of Table Unio, Buchholz 1601 j (ill, P). Bogota Penn., Brousmiche s.n. s (p). Col de Perchicara (Thio-Canala), Veillon 145 s 200 m . (P). Col de Nakety (Thio), Guillaumin, Chevalier \& Hürlimann 1445 s 150 m. (p, z). Dothio Kieho Valley, McKee 16510 j 100 m . (P). Ouroné (mouth of Dothio), Balansa 3484 오 (BM, Ny, P). Lower valley of Thio, McKee 15433 of $10-100 \mathrm{~m}$. (P), McMillan 5158 के (A, K, P). Slopes of Mt. Douetampo (Thio), Corbasson 13914 s 800 m. (P). N'Goye R., Veillon 511 s 10 m . (P). Mt. Vulcain (upper

Tontouta), Buchholz 1574 오 (ILL, K, P), de Laubenfels P412 ㅇ 560-900 m. (A, K, RSA, SBt), P412A j (A, RSA, SBT), P413 ô (A, RSA, SBt), Aymard 16346 우 600 m. (P), Virot $400 \mathrm{~s} 300 \mathrm{~m} .(\mathrm{A}, \mathrm{P})$, Baumann-Bodenheim $8053 \mathrm{~s}(\mathrm{P}, \mathrm{Z}), 8168$ S (P, z), 8268 s (P, z), 8808 s (P). Valley of Kalauéhola (Tontouta), Däniker $587 a \mathrm{~s}$ (z), Hürlimann $1679 \mathrm{~s} 150 \mathrm{~m} .(\mathrm{p}, \mathrm{z})$. Ni, Hürlimann 1708 s 850 m . (P, z). Slopes of Mt. Mou, White $2001 \mathrm{~s}(\mathrm{~K}, \mathrm{P})$. E. slopes of Erembéré, Virot 37 j 600 m. (A, P). Trail to Mt. Dzumac (N. of Couvelée R.), Franc 2492 of ( K , NY, P, US, Z), 2493 ô (K, NY, P, US, Z), 2494 s (A, K, z), Le Rat 2864 ㅇ ( P ), 2866 s (K), Virot 187 ò (A, NY, P, US), de Laubenfels P155 ㅇ 600 m . (SBT), Bernier 302 j (P), 303 के (P), Hürlimann 1088 s (P), McKee 2521 ô (A, P), 2522 j (A). Banks of Couvelée R., Balansa 1380A ô (Ny, P). Banks of Dumbéa R., Pancher s.n. S (P), Vieillard 1278 s (P). Forest of Mois de Mai (upper Yaté) Buchholz 1381 j (ILL, K, P), Baumann-Bodenheim 14987 j (P, z), 14993 s (P, z), 14997 j ( $\mathrm{P}, \mathrm{z}$ ), Bernier 309 ô (P). R. Bleue (Walker Forest), Bernier 304 j (P), 305 of (P), 306 j (P), 307 j (P), 308 s (P), de Laubenfels P393 of 160 m . (A, K, RSA, SBT), McKee 12906 of (P), Aubréville \& Heine 184 oे (P), Hürlimann \& Lucien $3486 \mathrm{~s} 200 \mathrm{~m} .(\mathrm{z})$. Pirogues R., White $2238 \mathrm{~s}(\mathrm{~K}, \mathrm{P})$. South, Raoul s.n. s (ill, p). Without loc. Franc 1964 s (A, BM, ny, p, us, Z).

Illustrations. Pilger, R. Pflanzenreich IV. 5 (Heft 18) : fig. 5D. 1903; Nat. Pflanzenfam. ed. 2. 13: fig. 118D. 1926; Sarlin, P. Bois et Forêts de la Nouvelle-Calédonie, t. 20. 1954.

The elongated bracts surrounding the mature seed distinguish this species from all other except Dacrydium araucarioides which has larger pollen cones and differently formed foliage leaves. Sterile specimens have more robust leaves than those of other species where a similar leaf shape is found. When growing in wet forests, particularly the collections from R. Bleue, the trees can grow to more than 20 m . and the leaf form is more incurved and acute in the manner of D. nidulum var. araucarioides. No seed structures have been collected for this variant and its status remains uncertain.
8. Dacrydium araucarioides Brongn. \& Gris, Ann. Sci. Nat. Paris V. 6: 244. 1866. Lectotype: Vieillard 1277, New Caledonia, Canala.
Dacrydium arthrotaxoides Carrière, Traité Conif. ed. 2. 697. 1867. Type: Vieillard 1277.
Podocarpus araucarioides (Brongn. \& Gris) Sebert \& Pancher, Not. Bois N. Caléd. 171. 1874.
Small tree $3-6 \mathrm{~m}$. high; bark in thick rough flakes, dark brown and slightly fibrous within, more or less smooth on the surface at first with occasional lenticels, weathering gray; branches spreading and becoming erect candelabra-like, rather open; juvenile leaves acicular, dense, curved, up to 12 mm . long; transitional leaves shorter and thicker, closely resembling the mature leaves of $D$. balansae, but somewhat longer, $5-7 \mathrm{~mm}$. long; mature foliage leaves developing gradually from the transitional stage, spreading but distinctly incurved with the blunt tip sharply curved and directed towards the branch axis, imbricate, only the angularly keeled upper middle dorsal part of the leaf exposed, aggregating to form a smooth
thick branch $4-6 \mathrm{~mm}$. in diam., strongly keeled on the axial side toward the leaf base, becoming concave toward the leaf tip, $3-5 \mathrm{~mm}$. long, $1-1.4$ mm . wide; pollen cones terminal, often on short lateral branches, or lateral just below a terminal cone, cylindrical, 9-18 mm. long, $2.5-3 \mathrm{~mm}$. in diam.; microsporophylls long triangular, acute with an incurved tip; seed cone terminal on short to long branches whose leaves are about 3 mm . long and strongly curved, cone bracts noticeably longer and straighter, at the cone apex about 5 mm . long, the tip slightly hooked, the whole cone bccoming red and fleshy when mature; 1-3 seeds surrounded by the bracts, becoming erect and almost as long as the enclosing bracts, oval but tapering to a blunt apex and wider than thick, 4.5 mm . long.

Distribution. Common and locally dominant throughout the serpentine scrub of the southern half of New Caledonia at low elevation and up to at least 1,000 meters.

New Caledonia. S. of Poro, McKee 14886 s 600 m . (p). Mts. above Canala, Vieillard 1277 오, ô (p-lectotype of Dacrydium araucarioides and holotype of D. arthrotaxoides; A, BM, GH, K, Ny, z-isotypes). Bogota Peninsula, Sarasin 294 우, of $500 \mathrm{~m} .(\mathrm{z})$. Messioncoué near Port Bouquet, Balansa 2507 우 ( $\mathrm{K}, \mathrm{P}$ ), 2508 s (P). Mts. above N'Goye, Schlechter 15175 s (K, P, z), 15176 ㅇ 1,000 m. (A, BM, K, P, z). Ridge N. of Mt. Tonta, McKee $17247 \mathrm{~s} 950-1,150 \mathrm{~m}$. (P). Mt. Humboldt, Däniker 2914 s (z). Mt. Dzumac, Le Rat 633 s (к, p), Franc 764 A s (P), 766 (z), Alleizette 119 ô (p). Upper Ouinné, Bernier $320 \mathrm{~s}, \mathrm{j}$ (p). Plateau leading to Mt. des Sources, $700-800 \mathrm{~m}$. Virot 152 s (A, P), s.n. s (A, P), Bernier 4 s (P), 5 人 (P), 6 우 (P), Buchholz 1059 ô (ILL, P), 1060 와 (ILL), 1194 j (ILL, K, P), 1215 우 (ILL, P), de Laubenfels P373 if (RSA), P374 ô (A, SBt), McKee 2202 of (A, P, US), 5669 ô (P), Hürlimann 211 s (p, z). Upper R. Bleue, Baumann-Bodenheim 8575 ¢ ( $\mathrm{P}, \mathrm{z}$ ), 8576 ô ( $\mathrm{P}, \mathrm{z}$ ). Mois de Mai (R. Blanche), McMillan 5128 oे 600 ft . (A, K, P), Hürlimann 1561 s (P), Bau-mann-Bodenheim $15002 \mathrm{j}(\mathrm{P}, \mathrm{z})$. Mt. Ouenarou, Baumann-Bodenheim \& Guillaumin $11818 \mathrm{~s}(\mathrm{P}, \mathrm{z})$. Mt. Dore, Pancher s.n. s (p-syntype of D. araucarioides), Baumann-Bodenheim \& Guillaumin 11407 ㅇ ( $\mathrm{P}, \mathrm{z}$ ), 11430 j ( $\mathrm{P}, \mathrm{z}$ ). Mt. Niocol, Pancher 380 오, $\hat{\delta}$ (K, P). Pirogues R., White 2122 s (A, K, P). Bois du Sud, Bernier 317 ㅇ, $\hat{\text { of ( }}$ ( P , Baumann-Bodenheim \& Guillaumin 11028 ô ( $\mathrm{P}, \mathrm{z}$ ), 12497 j (P, z). Marais Kiki, McKee 1124 s 150 m . (A), Baumann-Bodenheim 6232 $\mathrm{s}(\mathrm{P}, \mathrm{z}), 6256$ oे ( $\mathrm{P}, \mathrm{z}), 6338$ के, $\mathrm{j}(\mathrm{P}, \mathrm{z}), 6363$ ô ( $\mathrm{P}, \mathrm{z}), 13322 \mathrm{~s}(\mathrm{P}, \mathrm{z})$, Yaté R., Däniker 205 pt. ㅇ, $\mathrm{j}(\mathrm{z})$, Hürlimann $681 \mathrm{~s}(\mathrm{P}, \mathrm{z}), 1561$ oे ( z$)$, Baumann-Bodenheim $6071 \mathrm{~S}(\mathrm{P})$, Baumann-Bodenheim \& Guillaumin $6514 \mathrm{~s}(\mathrm{P}, \mathrm{z}), 6729$ ㅇ․ ( $\mathrm{P}, \mathrm{z}), 6752$ oे ( $\mathrm{P}, \mathrm{z}$ ), Thorne 28568 ô (p), Baas-Becking \& Stratin 6071 ô (z). Upper Vallé du Pin, Baumann-Bodenheim \& Guillaumin 11941 j ( $\mathrm{P}, \mathrm{z}$ ). Creek Pernod, Hürlimann 3144 के $170 \mathrm{~m} .(\mathrm{z}), 3145$ 오 ( z$)$. Plaine des Lacs (Madelaine R.), Compton 320 우, ô j (BM), Le Rat 2631 ô (A, p), Franc s.n. s (A, K), Foster s.n. S (P), Bernier 316 j (P), 318 우, ô (P), 319 j (P), Buchholz 1428 오 (ILL, K, P), 1466 아 (ILL, K, P), Denizot s.n. S (P), de Laubenfels P114 of, ô j (SBT), P342 ô (A, RSA), McKee 16324 j (P), Guillaumin 8370 s ( $\mathrm{P}, \mathrm{z}$ ), Aubréville \& Heine 171 ô (P), 133 오 (p), Däniker 205 p.p. s (z); $2781 \mathrm{~s}, \mathrm{j}$ (z), Baas-Becking 6071 오 (z), Blanchon 737 우 (P), Stauffer \& Blanchon 5812 오 (P, z), Bernardi 9368 oे (P). Upper Pirogues R., Baumann-Bodenheim \& Guillaumin 11598 s (P, z). Prony, Balansa 187 우, ô ( $\mathrm{K}, \mathrm{P}$ ), Franc 764 우, ô (A, BM, K, NY, p, US, z), Bernier 801 ㅇ (P), Cribbs 1581 s (P). Pic Foi, Brousmiche 502 s
summit (p). South, Raoul s.n. ô (p). Without loc., Deplanche 171 \& (p), Le Rat 1085 s (P), Veitch s.n. 오 (K), Franc s.n. (A), Petit 177 of (P), Baudouin 620 s (P), Hürlimann 409 oे (P).

Illustrations. Brongniart \& Gris, Nouv. Arch. Mus. Hist. Nat. Paris 4: t. 2. 1868. Pilger, R. Pflanzenreich IV. 5 (Heft 18) : fig. 49, F. 1903; Nat. Pflanzenfam. ed. 2. 13: fig. 118, F. 1926; Sarlin, P. Bois et Forêts de la Nouvelle-Calédonie, t. 17. 1954.

This species is one of the several specialized plants with bizarre form flourishing in the serpentine scrub or maquis in the southern part of New Caledonia under moderate to heavy rainfall. It has enough in common with Dacrydium balansae to suggest that it is derived from that species. The robust form parallels that of $D$. gibbsiae, another endemic on serpentine.
9. Dacrydium lycopodioides Brongn. \& Gris, Bull. Soc. Bot. France 16: 329. 1869. Type: Pancher in 1869, New Caledonia, Mt. Mou.
Tree to 25 m . or more, profusely branched; bark in brown flakes, fibrous and lighter within, surface more or less smooth and covered by numerous small lenticels; juvenile leaves acicular, very fine, up to 10 mm . long, changing gradually to the adult form; mature foliage leaves flat, lanceolate, slightly keeled on the dorsal surface, with a distinct rib on the axial surface, pungent, spreading and curved so that the tips are parallel with the branch, $3-4.5 \mathrm{~mm}$. long, $0.7-0.8 \mathrm{~mm}$. wide; pollen cones terminal and often also lateral directly at the base of a terminal cone, cylindrical, 4-7 mm . long, 1.2 mm . in diameter; microsporophylls triangular, somewhat elongated, acute, overlapping; seed cone terminal, often on a short branch, leaves just below the fertile structure smaller than ordinary foliage leaves, sometimes only 1 mm . long, bracts of the cone larger towards the apex, up to 2.5 mm . long and partly covering the epimatium, normally only one fertile bract; seed becoming partly erect and completely exposed, rich shining chocolate brown, oval but tapering to a blunt tip, wider than thick, 3-3.5 mm. long.

Distribution. In moist forests within a restricted part of southern New Caledonia, from about 900 to 1,400 meters elevation.

New Caledonia. Mount Mou, 1,140 m. Pancher (1869) $\circ$ (p-holotype), Vieillard (Pancher) $3265^{4}$ ㅇ (BM, K), Vieillard 3265 j (GH, K, P), Pancher (1870) 우 (к, P), Hennecart s.n. ô (p), 547 우, ô (p), Balansa 2863 우, j (BM, K, NY, P), Virot'9 j (A, P), 40 j (A, P), de Laubenfels P134 우, 3 (SBT), P348 오 (A, RSA, SBT), P350 j (A, RSA, SBT), P351 j (A, RSA, SBt), Bernier 291 j (p), Chevalier s.n. j (ILL), Buchholz 1083 j (ILl, P), Däniker 2827 ㅇ, j (z), Hürlimann 1581 j (P), McKee 2260 j (P), 3514 j (A, P), 3515 j (A, P), Thorne 28734 j (P), Baumann-Bodenheim 15611 j (P, z), 15612 s ( $\mathrm{P}, \mathrm{z}$ ), Cale \& Naturel 1581 j (z).

[^2]Ridge above Ouinné R., de Laubenfels P448 오 $1,000 \mathrm{~m}$. (A, K, RSA, SBT), P449 $\hat{o}^{\circ}$ (A, RSA, SBT), P450 j (A, K, RSA, SBT), Bernier 289 j (P), 290 S (P), Bernardi 1248 s $800-1,000 \mathrm{~m}$. (P). Mt. Humboldt, Baumann-Bodenheim 15355 j 1,400 m. (P, Z), $15405 \mathrm{~s}(\mathrm{P}, \mathrm{z})$. Without loc., Mueller 94 j (P), Baudouin 553 j (P).

Illustration. Sarlin, P. Bois et Forêts de la Nouvelle-Calédonie, t. 18. 1954.

The small seeds and pollen cones and the short flat acute leaves set Dacrydium lycopodioides apart from all other species of the genus but its morphology is not far removed from many of them. It is a rather delicate looking tree with feathery light green foliage which is actually quite tough. Within its limited range it is strictly a canopy tree of mountain forests and does not penetrate the mossy forests along the exposed ridges.

## 10. Dacrydium spathoides de Laubenfels, sp. nov.

Arbor ad 34 m . alta; cortex bracteatus, niger; folia recta, marginalibus parallelis, apice subacuta, plana forma spatharum, dorso carinata, patula, $4-7 \mathrm{~mm}$. longa, $1-1.2 \mathrm{~mm}$. lata. Strobili masculi cylindracei, laterales, aliquot folia minora ad basem, 10 mm . longi, 2.5 mm . crassi; antherae triangulares. Strobili feminei ad apicem ramulorum saepe cum foliis brevibus 2 mm . longis; folia ad basem seminis longiora, 3 mm . longa; semen protrudendum, 4 mm . longum. Holotypus: Brass 12659 (A), New Guinea, Barnhard Camp. Fig. 3c.

Distribution. In mossy mountain forests from 1,050 to 2,200 meters elevation, on the islands of Borneo and New Guinea.

Sarawak. Mt. Dulit, Mjoberg 23 ô $1,200-1,500 \mathrm{~m}$. (A, K, Ny), Richards 1997 s $1,300 \mathrm{~m}$. (А, к, L). Meruong Plateau, Brunig S8722 of $3,400 \mathrm{ft}$. (K, L), S9992 if $1,050 \mathrm{~m}$. (L). New Guinea. Idenberg R., 18 miles SW. of Barnhard Camp, Brass 12659 ㅇ $2,150 \mathrm{~m}$. (A-holotype; BRI, K, L-isotypes), 12660 j (A, BRI, L), Brass \& Versteegh 11996 2,200 m. (A, BRI, L).

The very flat bracts in the fertile region, longer than the somewhat reduced leaves of the subtending branch, and covering about half of the mature seed, distinguish Dacrydium spathoides from all other species except perhaps D. lycopodioides, which has distinctly smaller seeds and pollen cones, and much smaller lanceolate rather than linear leaves. These foliage leaves are unusual within Podocarpaceae in their resemblance to juvenile leaves of Cupressaceae, particularly Juniperus, differing, however, in their spiral placement. The specimens from Borneo have longer (1015 mm .) leaves and on Richards 1997, which may be slightly juvenile, they spread at right angles to the branch rather than at an angle of about $45^{\circ}$, as in other specimens. The Borneo material may possibly represent a separate taxonomic entity.

## 11. Dacrydium magnum de Laubenfels, sp. nov.

Arbor ad 30 m . alta; ramosissima; rami dense foliati, $6-7 \mathrm{~mm}$. diametro; folia acicularia, acuta, falcata, dorsaliter carinata, 4-6 mm. longa, 0.3-


Figure 4. a, Dacrydium magnum de Laubenfels, portion of the holotype, de Haan bb23806 (L), enlarged; b, D. beccarii Parlatore var. rudens de Laubenfels, portion of the holotype, Brass 27821 (A), enlarged; a and b are at same magnification.
0.4 mm . lata. Strobili feminei ad apicem ramulorum, saepe ramulorum brevium folia diminuta, folia strobili semen solitarium cingendum. Semen 5 mm . longum. Holotypus: de Haan bb23806 (L), Moluccas, Obi. Fig. $4 a$.

Distribution. The island of Obi in the Moluccas in primary forest and locally common.

Moluccas. Obi, de Haan bb23806 ㅇ 500-600 m. (L-holotype), bb23807 j (L).
This isolated collection from a poorly studied region is distinct from all other Dacrydium species in having the seed surrounded by slender bracts no longer than the foliage leaves, protruding only slightly when mature. It differs from $D$. beccarii and $D$. xanthandrum, whose seeds are well exposed when mature but are produced on branches with distinctly reduced leaves, whereas the fertile branch of $D$. magnum has unreduced leaves. The leaves are also more spreading and rigid than those of $D$. beccarii but not at all flattened as in D. xanthandrum. This new species differs from $D$. gibbsiae by the slender bracts in the fertile area, that are less than half as wide and not flattened. Juvenile leaves are at least 17 mm . long. The mature foliage leaves are slightly incurved so that their tips are not exposed.
12. Dacrydium beccarii Parlatore in DC. Prodr. 16 (2): 494. 1868. Lectotype: Beccari 2385, Sarawak, Mt. Poe.

Bush 3-4 m. high to tree, rarely up to 35 m .; bark smooth, thin, gray, and fissured, sometimes scaly, brownish within; profusely branched forming an umbrella-shaped crown with the twigs stiffly erect; juvenile leaves very slender, up to 20 mm . long, changing gradually to the adult form; mature foliage leaves needle-like, strongly keeled on the dorsal side, spreading but curved axially, acute, crowded; pollen cones ovoid, at least 10 mm . long and 3 mm . in diam., subtended by a few reduced needleleaves, lateral as short side branches, or terminal; microsporophyll lanceolate, acute, more than twice as long as wide; seed cones placed in the same manner as the pollen cones and formed of spreading reduced needle-leaves, becoming reddish when ripe; seed solitary or a pair in a nearly terminal position, becoming nearly erect, oval-elongated, wider than thick, 4 mm . long, well exposed when ripe.

The reduced needles of the fertile shoots and the not elongated cone bracts distinguish this species from all others except Dacrydium xanthandrum whose foliage leaves have a different form. Sterile specimens are characterized by their fine slender crowded needles without incurved tips, strongly resembling the juvenile leaves of many other species but generally more crowded and shorter. Three varieties have been recognized based on contrasts in leaf form.

## 12a. Var. beccarii.

Leaves dense, crowded, $5-8 \mathrm{~mm}$. long or longer, $0.4-0.8 \mathrm{~mm}$. wide.
Distribution. In scrub formations on exposed ridge tops and in high mossy forests, from Malaya to the Solomons generally in somewhat isolated localities, from 1,000 to over 2,000 meters, or rarely as low as 500 meters. Map 4.

Malaya. Kedah Peak, Kochumen 79133 oे $3,800 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}$ ), Robinson \& Kloss 6053 j (к). G. Luas (Perak), Yapp 493 j 5,200 ft. (к). Perak, Scortechini s.n. 오 (A, K). G. Benom (Pahang), Mus (1925) of $5,000 \mathrm{ft}$. (к). Mt. Ophir (Jahore), Griffith 5003 우 ( $\mathrm{GH}, \mathrm{K}$ ), s.n. of (L), Kerr 3155 우 $1,300 \mathrm{~m}$. (К), Maingay 2750 o ( K ). Without loc. Holttum $20711 \mathrm{~s} 6,000 \mathrm{ft}$. (BRI). Sumatra. Atjeh, Gajoland, Van Steenis 8357 of $2,600 \mathrm{~m}$. (L). Atjeh, Tamyang, NIFS bb10748 of 950 m. (L). Karoland (E. Coast), NIFS bb7707 j $1,400 \mathrm{~m}$. (L). Siborong (Tapanuli), NIFS bb3829 s $1,900 \mathrm{~m}$. (L). Silindung (Tapanuli), NIFS bb5671 s $1,300 \mathrm{~m}$. (L). Lubuksikaping, NIFS bb6737 j (L). Betw. Djambu Dolok and Baturangin, Surbeck 107 ¢ (A, L). Sarawak. Mt. Poe (G. Rumput), Beccari $2384 \mathrm{~s} 5,000 \mathrm{ft}$. (FI), 2385 ¢ ( FI -lectotype; k-isotype), Clemens $20385 \mathrm{~s}, \mathrm{j}$ $6,000 \mathrm{ft}$. (A, K, NY), Anderson 190 ㅇ $2,000 \mathrm{~m}$. (к), Hewitt (1900) s (k). Merurong Plateau, Brunig Sg990 s $2,300 \mathrm{ft}$. (L). Mt. Dulit, Richards 1059 j 1,230 m. (A, K, L), 1808 of $1,100 \mathrm{~m}$. (A), $1996 \mathrm{~s} 900-1,000 \mathrm{~m}$. (A, K, L). Mt. Penrissen, Mjoberg 221 j 4,400 ft. (A, Ny). North Borneo. Mt. Kinabalu, Smythies S10607 s $6,000 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}$ ). Ranau, Mujin $33774 \circ 5,300 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}$ ). Kota Belud, Meijer SAN 21086 ot $5,000 \mathrm{ft},(\mathrm{k})$, SAN $21100 \mathrm{~s}(\mathrm{~K}, \mathrm{~L})$. Without loc., Comber 101 ¢ $5-6,500 \mathrm{ft} .(\mathrm{K})$. Borneo. West, Bengkajang, G. Bawang, NIFS bb24779 s $1,442 \mathrm{~m}$. (A, L). G. Damus, Hallier 510 s (L). Ulu Kelan, Molengraaff B3475 j $1,000 \mathrm{~m}$. (L, NY), 3476 j (L). Amai Ambit, Hallier B3431 s (L, Ny). Mt. Bongo,


Maps showing distribution of: 4, Dacrydium beccarii Parlatore (dots), D. guillauminii Buchholz, known only from New Caledonia; 5, D. xanthandrum

Haviland 2070 s (к). Philippines. Leyte: Biliran, Sulit 21694 s 1,350 m. (L). Negros: Dumaguete, Or, Herre 1150 s 4-6,000 ft. (A, ny). Mt. Canlaon, Edaño 21936 j 1,860 m. (L). Mt. Marapara, Curran \& Foxworthy 13612 s (L, Ny, Us). Mt. Silay, Everett 4227 j (ny, us). Without loc., Britton 343 s 1,700 m. (L). Mindanao: Mt. Malingdang, Mearns \& Hutchinson 4547 s ( $\mathrm{K}, \mathrm{l}, \mathrm{ny}$, us), 4731 s (ny, us). Moluccas. Taliabu, Hulstijn 126 오 (L). New Guinea. Vogelkop, Upper Aifat Valley, Moll BW 12853 s 870 m. (L); Tamrau Ra., Van Royen $\mathcal{E}$ Schram 7791 s 920 m . (к, L, Lae). Cycloop Mts., Gjellerup 572 s 600-1,500 m. (А, к, L). Hellwig Mts., Lorents 1698 s 2,100 m. (к, L). Wissel L., Maiare, Eyma s.n. s (L). Normanby I., Brass 25660 of mt. crest (A, K, L, LaE, US). New Britain. Mt. Tangis, Frodin NGF 26902 s 3,500-5,000 ft. (L). Solomon Is. Santa Ysabel, Baea BSIP 2475 of well above 3,000 ft. (ridge top) ( $\kappa, ~$ L, LaE), Brass 3264 ô, j $1,100 \mathrm{~m}$. (A, BRI, L). Guadalcanal, Mt. Popomansiu, Braithwaite 4810 우 (к), Hill 9004 j 7,000 ft. (к).

Illustration. Corner, E. J. H. Gard. Bull. Straits Settlements 10 : t. 6. 1939.

The branches of this variety have a definite bushy aspect because of the fine dense growth of needles. Several specimens with leaves more robust than normal for the species have been included here, although their status is a little uncertain. These include Van Steenis 8357, Brass 3264, and Brass 25660.

## 12b. Var. subelatum Corner, Gard. Bull. Straits Settlements 10: 243. 1939. Type: Corner SFN 33224, Malaya, Pine Tree Hill.

Adult leaves noticeably less bushy than in the typical variety, variable in length, $3-6 \mathrm{~mm}$. long; up to three seeds in a fertile structure.

Distribution. Mixed with var. beccarii in the mossy forests and exposed ridges of Malaya, from 1,200 to 2,300 meters.

Malaya. G. Bubu (Perak), Wray 3875 ㅇ $5,000 \mathrm{ft}$. (A, K). G. Tahan (Pahang), Haniff \& Nur SFN 7994 of $5,500-7,000 \mathrm{ft}$. (к). G. Tapis (Pahang), Symington \& Kiah s.n. ㅇ $4,600 \mathrm{ft}$. (к). Fraser Hill (Pahang), Cubitt 6519 s (к). Pine Tree Hill (Pahang), Corner SFN 33224 s $4,200 \mathrm{ft}$. (k-isotype). G. Padang (Trengganu), Moysey SFN 31072 s 4,000 ft. (к), SFN $31841 \mathrm{~s} 3,800 \mathrm{ft}$. (к).

Illustrations. Corner, E. J. H. Gard. Bull. Straits Settlements 10 : $t .7$ \& 8.1939.

Only the shorter needles distinguish this variety from variety beccarii, and intermediates between them can be found.

12c. Var. rudens de Laubenfels, var. nov.
Folia patula incurvata conferta in forma rudenti. Holotypus: Brass 27821 (A), Sudest Island. Fig. 4b.

[^3]Distribution. New Guinea to Sudest I., from 300 to 3,000 meters in elevation.

New Guinea. Western Half: Mt. Goliath, de Kock 42 s 3,000 m. (L). Without loc., Brandenhorst 132 s (L), 133 s (L), van Römer 1233 s (L). Sudest (Tagula) I., Brass 27821 ㅇ 500-600 m. (A-holotype; к, L, us-isotypes), 28187 ㅇ 300 m . (A, K, L, US), 28188 j (A, L, US).

This variety with incurved leaves forming a compact and smooth ropelike branch system contrasts strongly with the two varieties which have spreading leaves and a ragged appearance. Otherwise var, rudens does not differ significantly from the remaining varieties of this species.
13. Dacrydium xanthandrum Pilger, Bot. Jahrb. 69: 252. 1938. Lectotype: Clemens 4504, New Guinea, Morobe District.
Tree to 30 m . high, sometimes stunted on ridges; densely branched; bark chocolate brown or reddish, peeling in thick flakes, bearing lenticels; leaves spreading obliquely, slightly incurved, linear-lanceolate, generally wider than thick, keeled on the back, acute, $6-10 \mathrm{~mm}$. long, or longer on vigorous branches and when juvenile, $0.6-0.8 \mathrm{~mm}$. wide, not crowded; pollen cones lateral or terminal and subtended by several reduced leaves, oval to cylindrical, $5-13 \mathrm{~mm}$. long; microsporophylls narrowly triangular to lanceolate, acute, $2-2.5 \mathrm{~mm}$. long; seed cones terminal, often on very short branches, fertile bracts in the form of reduced leaves; seeds rich tan, 2-angled, 5 mm . long, more or less protruding when mature. Fig. 5.

Distribution. The island of Borneo and the Philippines to the Solomons, in the mountains from 1,000 to 2,400 meters, rarely down to 500 meters above sea level. Map 5.

Sumatra. Road from coast to Tapanuli (Toba L.), Bangham 1070 오 4,100$4,500 \mathrm{ft}$. (A, K, Ny). Sarawak. Mt. Luiga, Beccari 3948 of (FI). Baram, Anderson 4545 ㅇ $4,800-7,000 \mathrm{ft}$. (K, L). G. Mulu, Hotta 14597 oे 1,200-1,600 m. (L). North Borneo. Kinabalu, Nicholson SAN 17827 \& $8,800 \mathrm{ft}$. (BRI, K, L), Clemens $32502 \mathrm{~s} 6,000 \mathrm{ft}$. (A, K, L, NY), 34341 ㅇ $5-6,000 \mathrm{ft}$. (A, K, L, NY). Ranau, Nicholson SAN 39768 ㅇ $8,000 \mathrm{ft}$. (к), Meijer SAN 29153 s $7,000 \mathrm{ft}$. (к, L). Tambunan, Mikil SAN 32086 ô montane (к, L). Penampang, Clemente 5980 s 5,000 ft. (к, L), Leaño-Castro 5985 s (K, L). Mt. Alab, Keith 5965 j 6,000 ft. (к, L). W. Borneo. B. Raja, Winkler 1037 o $1,600 \mathrm{~m}$. (L). Philippines. Mt. Umingan (Nueva Ecija), Luzon, Ramos \& Edaño 26510 오 (A, K, US). Mt. Halcon, Mindoro, Rabor 20485 oै, j 1,600 m. (L), Edaño 3265 s 780 m . (A), Merrill 5714 s (Us), 5789 j (ny, us). Calapan, Mindoro, Vidal 3910 ㅇ (A, K). New Guinea. Cycloop Mts., Karstel BW 5440 s 510 m . (L, LaE). Sepik region, Ledermann 9395 s (L). Chimbu, Cavenaugh NGF 3334 j (A). Morobe District, Ogeramnang, Clemens 4504 oे (A-lectotype; z-isotype), $5390 \circ 5,900 \mathrm{ft}$. (A-syntype), 6398 우 $5,850 \mathrm{ft}$. (A-syntype), $6408 \mathrm{~s} 5,850 \mathrm{ft}$. (A), $6488 \mathrm{~s} 4,500 \mathrm{ft}$. (A). Bougainville Is. Kajewski 1694 oे 950 m . (A, BRI), 1709 ㅇ $1,000 \mathrm{~m}$. (A, BRI, L). Solomon Is. Guadalcanal, Walker BSIP 247 오 1,500 ft. (A, BRI, K, L), Kajewski 2652 s 1,200 m. (A, BRI, L).

The range of this species overlaps that of Dacrydium beccarii with which it is often confused, both being found for example, at Ranau and


Figure 5. Dacrydium xanthandrum Pilger, photograph of the lectotype, Clemens 4504 (A).
on Mt. Kinabalu. D. xanthandrum differs in the noticeably flattened leaves which are widely spreading and distinctly less dense. It also grows with $D$. gibbsiae and its leaves strongly resemble the transitional leaves
of that species, but, not only are the adult leaves of D. gibbsiae much more robust, the pollen cone is much larger, and the fertile shoots have unreduced leaves. The specimen from Sumatra cited here has much more robust leaves similar to nearly mature leaves of $D$. gibbsiae and may, with more material, be found to represent a distinct taxonomic unit.
14. Dacrydium gibbsiae Stapf, Jour. Linn. Soc. Bot. 42: 192. t. 4. 1914. Type: Gibbs 4162, North Borneo, Mt. Kinabalu.

Dacrydium beccarii var. kinabaluense Corner, Gard. Bull. Straits Settlements 10: 244. 1939. Type: Carr SFN 26437, North Borneo, Mt. Kinabalu (not seen; photo included in description).
Much branched tree to at least 12 m . high; juvenile leaves acicular, $12-20 \mathrm{~mm}$. long, spreading but slightly incurved; mature foliage leaves becoming wider and thicker but distinctly flattened, incurved and imbricate (an angular keel on the dorsal side), acute, aggregated into ropelike shoots about 8 mm . in diameter, individual leaves $5-7 \mathrm{~mm}$. long, $1.0-$ 1.3 mm . wide, rigid; pollen cones terminal or lateral, cylindrical, 20-25 mm . long by $5-7 \mathrm{~mm}$. in diameter; microsporophyll lanceolate, 5 mm . long; seed cone terminal, often on a very short lateral branch, formed of largely unmodified leaf-like structures and with one or two fertile apical leaves, becoming reddish when mature; seeds becoming almost erect, surrounded by but spreading apart the subtending leaves, oval and tapering slightly towards the apex, 4.5 mm . long.

Distribution. On the slopes of Mt. Kinabalu, in serpentine soils where it is common from 1,500 to 3,300 meters.

North Borneo. Mt. Kinabalu, Gibbs 4162 ㅇ over 6,000 ft. (BM-holotype; Kisotype), 4050 j (BM), Clemens 10685 오 (A, GH, K), 10879 j (A), 11091 ô (A), $28542 \mathrm{~s} 11,000 \mathrm{ft}$. (K), $30922 \mathrm{j} 4-5,000 \mathrm{ft}$. (A, L, NY), 33037 ㅇ, j $5,000 \mathrm{ft}$. (A, L, Ny), 40151 ㅇ $6,500 \mathrm{ft}$. (A, NY), Griswold 67 j (A), Haviland $1183 \mathrm{~s} 6,600 \mathrm{ft}$. (к), Chew \& Corner 4303 j (к), 4361 j $7,000 \mathrm{ft}$. (к), 8024 우 (к), Nicholson SAN 17826 아 9,000 ft. (Bri, L), Meijer SAN 21097 s 5,500 ft. (k), SAN 21098 j, $5,000 \mathrm{ft}$. (к), SAN 23500 s $6,000 \mathrm{ft}$. (к), Colenette $543 \mathrm{~s} \mathrm{8,000} \mathrm{ft}. \mathrm{(к)}$. Plateau, Colenette 542 ㅇ $5,100 \mathrm{ft}$. ( K ).

Illustration. Corner, E. J. H. Gard. Bull. Straits Settlements 10 : t. 9. 1939, as Dacrydium beccarii var. kinabaluense.

This is one of the many distinctive endemics of Mt. Kinabalu and, like many, is characteristically robust in form. The pollen cone is unique. With the discovery of fertile Dacrydium xanthandrum specimens well up on Mt. Kinabalu, many of the "juvenile" specimens may actually be that species.

## 15. Dacrydium guillauminii Buchholz, Bull. Mus. Hist. Nat. Paris II. 21: 282. 1949. Type: Buchholz 1728, ${ }^{5}$ New Caledonia, Rivière des Lacs.

${ }^{5}$ In the description of this species the collection number given is 1278 , clearly a typographical error.

Erect bush 1-2 m. high; bark with small dark rough flakes, fibrous brown within, surface more or less smooth at first and covered with numerous small lenticels, developing many small cracks with age; profusely branched; leaves becoming denser and less spreading with age but not at all reduced in size, acute, needle-like or slightly compressed, bushy imbricate, $13-17 \mathrm{~mm}$. long, 1.0 mm . wide; pollen cones terminal and lateral, the lateral ones at the base of a terminal cone and smaller, 8-14 mm . long, tapering from the base; microsporophylls with a long lanceolate tip from 5 mm . at the base of the pollen cone to not more than 2 mm . long near the apex; seed cones terminal, sometimes on very short lateral branches; bracts of the seed cone unmodified or slightly reduced leaves; seeds up to five in a cone, subterminal, oval, wider than thick, laterally keeled, the tip rounded with the micropyle projecting, 4.5 mm . long.

Distribution. Probably the most restricted species of the genus, found only for a few kilometers along the Madelaine River (Rivière des Lacs) and on the margins of Lac en Huit, from which that river flows, and only at the very edge of the water.

New Caledonia. Rivière des Lacs, Buchholz 1728 ô (ill-holotype; K, pisotypes), de Laubenfels P341 ㅇ (A, RSA), P341A ô (A, RSA), Bernier 323 j ( P ), s.n. ô (p), Sarlin 242 s (p), Däniker 205 p.p. (z), Baumann-Bodenheim \& Guillaumin 11798 s ( $\mathrm{P}, \mathrm{z}$ ), Hürlimann 3471 s $146 \mathrm{~m} .(\mathrm{z})$, Bernardi $9360 \mathrm{~s}(\mathrm{P}, \mathrm{z})$, Blanchon 1162 s (P). Lac en Huit, de Laubenfels P116A oे (SBT), P116B of ( K , SBT ), McKee 3385 of (A, K, P, US).

Illustration. Sarlin, P. Bois et Forêts de la Nouvelle-Calédonie, t. 21. 1954.

This distinctive bush, a component of the serpentine maquis, bears strong resemblances to Dacrydium beccarii and probably represents an endemic pedomorphic variant of that species.
16. Dacrydium comosum Corner, Gard. Bull. Straits Settlements 10 : 244. 1939. Type: Corner 33222, Malaya, Pine Tree Hill.

Tree 4-12 m. high; profusely branched with an umbrella-shaped crown; bark in small flakes; foliage branches bushy, densely leafy; leaves spreading at an angle and then incurved near the base, lanceolate-pungent, distinctly flattened, $12-20 \mathrm{~m}$. long and $0.7-1.3 \mathrm{~mm}$. wide; juvenile leaves up to 33 mm . long; pollen cones unknown; seed cone on a short lateral branch, often with two seeds; seeds $4-5 \mathrm{~mm}$. long.

Distribution. Mossy forest on exposed ridges, from 1,200 to 2,000 meters elevation in parts of Malaya, common locally but of restricted range.

Malaya. Pahang. Pine Tree Hill, Corner SFN 33222 s $1,500 \mathrm{~m}$. (k-isotype), Burkill \& Holttum $8536 \mathrm{~s}(\mathrm{~A}, \mathrm{~K})$, Melville \& Landon 4814 s (к). G. Tahan, Haniff \& Nur SFN $8307 \mathrm{~s} 1,500-2,000 \mathrm{~m} .(\mathrm{A}, \mathrm{K})$.

Illustration. Corner, E. J. H. Gard. Bull. Straits Settlements 10: t. 10. 1939.

Like Dacrydium guillauminii, $D$. comosum is apparently a pedomorphic variant of some other species, perhaps $D$. xanthandrum. The distinctly flattened and much longer leaves set it apart from $D$. beccarii which grows in the same area. The relationships between the flattened but falcate-leaved Dacrydium species (xanthandrum, comosum, gibbsiae, spathoides, and lycopodioides) are unclear. They may be a group with a common origin or each may have developed separately from other stock. It is worth noting that, where known, their juvenile leaves at intermediate stages have an unflattened form. Thus the flattening, for some at least, does not represent a continuation of the seedling flattenedleaf condition. This is in distinct contrast to the flat and not falcately incurved leaves in other genera of the family.

Falcatifolium de Laubenfels, gen. nov. Type species: Falcatifolium falciforme (Parlatore) de Laubenfels.

Frutex vel arbor; folia patentia, falcata, bilateraliter complanata. Ad basem ramorum foliosorum et ramulorum fertilium squamae numerosae, tenues carinatae. Strobili masculi axillares vel terminales in ramulis brevissimis. Strobili feminei in ramulis brevissimis, axillares; squamula ultima sola ovulifera; ovulum unicam inversum, epimatio involutum; semen tandem suberectum, epimatio cristato basi breviter involucrato, crista lateraliter prominens; strobili maturi carnosi.

This new genus was previously included as a part of Dacrydium, identified as group A by Florin (1931, pp. 256-259) because of its differences from other members of that genus. Tengnér (1965) also discussed the distinctions between Florin's group A and the rest of Dacrydium. Several basic differences justify the separation of Falcatifolium as a new genus. The fertile structures in Falcatifolium are produced on specialized axillary shoots whereas in Dacrydium they grow terminally on ordinary foliage branches. The epimatium of the new genus has a pronounced hump which projects laterally from the mature cone, in contrast with the smaller epimatium of Dacrydium which becomes a cup-like fringe at the base of the mature seed, not projecting at all. Very striking in Falcatifolium are the bilaterally flattened leaves which spread out distichously, contrasting not only with the fertile shoots and basal scales of new growth, but also with the bifacially flattened juvenile leaves which give way rapidly to the adult form at about the second year of growth. In Dacrydium bilaterally flattened leaves do not occur. The name Falcatifolium reflects the basal falcate curvature of the leaves away from the branch. Tengnér (1965) further reports a lack of vascular fibers and pollen differences which separate this new genus from Dacrydium. Four species can be differentiated, primarily on the basis of leaf form, distributed from Malaya to New Caledonia in moist mountain forests, where they occur as undershrubs or small understory trees.

## Key to the Species of Falcatifolium

1. Leaves broad and flat.
2. Leaves blunt to acute, normally more than 20 mm . long and 3 mm . wide. 3. Pollen cone $20-30 \mathrm{~mm}$. long by $2-3 \mathrm{~mm}$. in diam.; upper edge of the leaf normally curved upwards, leaf variable in size and generally more than 25 mm . long.
3. F. falciforme.
4. Pollen cone $15-25 \mathrm{~mm}$. long by $1.5-2.0 \mathrm{~mm}$. in diam.; upper edge of leaf rarely even slightly curved upwards, leaf rarely as much as 25 mm . long.
5. F. taxoides.
6. Leaves apiculate, $12-17 \mathrm{~mm}$. long by $2-3.5 \mathrm{~mm}$. wide. . 19. F. papuanum.
7. Leaves narrow, keeled.
8. F. angustum.
9. Falcatifolium falciforme (Parlatore) de Laubenfels, comb. nov,

Podocarpus falciformis Parlatore in DC. Prodr. 16(2): 685. 1868. Lectotype: Beccari 2437, Sarawak, Mt. Poe.
Nageia falciformis (Parl.) Kuntze, Rev. Gen. Pl. 800. 1891.
Dacrydium falciforme (Parl.) Pilger, Pflanzenreich IV. 5 (Heft 18): 45. 1903.
Tree 3-10 (rarely to 25 ) m. tall; bark more or less smooth, rich purplebrown, inner bark dark reddish; leaves variable in size, on mature fruiting trees from 20 to 65 mm . long and $5-7 \mathrm{~mm}$. wide, smoothly curved outward from near the base to the widest part (about one third of the length from the base), then tapering and curving more or less gradually towards the acute tip, smaller leaves which may be almost straight and probably not fully developed, sporadically occurring along with normal leaves, narrowed at the base to a short, angled petiole and then decurrent; pollen cone axial or terminal on a short, 2-3 mm., scaly stalk, cylindrical, 20-30 mm . long and $2-3 \mathrm{~mm}$. in diam.; microsporophyll small, triangular-acute; seed cone on a short scaly shoot up to 5 mm . long, the cone made up of about a dozen larger, acuminate scales, the apical one fertile, the whole cone becoming fleshy on maturity; seed with a humped epimatium at the base, oval, flattened and narrowed to a blunt apical ridge, 6 mm . long, 5 mm . wide, and 4 mm . thick.

Distribution. Mostly an understory tree in open rainforests from 600 to 1,650 meters in elevation, from Malaya and Luzon to Obi in the Moluccas. Map 6.

Malaya. Mengkuang, Wyatt-Smith 93115 of $5,000 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}, \mathrm{Us}$ ). Batu Gajah, Perak, Ridley 5695 के (к). G. Tahan, Haniff \& Nur SFN 7851 के (к), Ridley 16026 ô (k), $16178 \mathrm{~s}(\mathrm{~K})$. Pine Tree Hill, Penang, Poore $6228 \mathrm{~s} 4,300 \mathrm{ft}$. (к). Fraser Hill, Nur 10507 s 4,000 ft. (A). Lingga Archipelago. Teysmann 169 오 (L), Hullett 5695 के (A, BM). Sarawak. Santubong top, Beccari 2126 ô (F), Haviland (1890) के 2,800 ft. (к). Mt. Dulit, Richards 1834 oे 900 m . (A, BM, K, L), 1836 j (BM, к). Mt. Poe, Beccari 2437 오 (FI-lectotype; A, K-isotypes), Clemens 20238 s $6,000 \mathrm{ft}$. (Ny), $20263 \mathrm{~s} 5,000 \mathrm{ft}$. (A, Ny). Mt. Mattang, Beccari 1331 s (FI), 1697 S (FI), 2941 아 (FI), Koley 11669 s (K). Trusan, Brunig S8743 s (k, L). Meruong Plateau, Brunig S9994 s 800 m. (L). Without loc. Anderson 8365 oे $2,000 \mathrm{ft}$. (к, L), Gibbs $4400 \mathrm{~s} 3,000 \mathrm{ft}$. (вм, к). Brunei. Ash-
ton BRUN $1031 \mathrm{~s} 4,300 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}$ ), $1066 \mathrm{~s} 4,750 \mathrm{ft}$. ( $\mathrm{K}, \mathrm{L}$ ). North Borneo. Kinabalu, Clemens 10962 s (A, к), 27851 j 7,000 ft. (вм, к, Ny), 33078 of $5,000 \mathrm{ft}$. (A, K, L, Ny), s.n. s $4-5,000 \mathrm{ft}$. (A, L, Ny), Gibbs 4067 s (K), Chew \& Corner 1863 oे $5,500 \mathrm{ft}$. (к), $4847 \mathrm{~s} 5,000 \mathrm{ft}$. (к). Lahad Datu Dist. (Mt. Silam), Wood SAN A4179 s 2,500 ft. (A, BRI, L), Meijer \& Anak SAN 37497 of 2,000 ft. (к, L), SAN 22705 s (к). Penampang, Clemente 5995 s (к), Leaño-Castro 5986 s (к). Ranau, Meijer SAN 20953 s (к), Anon. SAN 20279 j 4,000-4,500 ft. (L). Borneo. Bengkajang, NIFS bb9664 s 1,400 m. (L), bb24778 s 1,200 m. (A, L), bb25157 s 1,100 m. (L). G. Damus, Hallier 506 s (L). Mt. Palimasan, Kostermans 12779 s 500 m. (L). Lianggagang, Hallier 2688 s (L). Philippines. Mindanao: Davao, De La Cruz 27746 j (us). Mindoro: Mt. Halcon, Merritt 4425 오 (F, US), Merrill 5744 s (K, L, NY, US), Rabor 20482 s $1,600 \mathrm{~m}$. (L). Without loc. Whitehead (1896) s, j (BM). Luzon: Mt. Umingan, Nueva Ecija, Ramos \& Edaño 26394 ô (A, NY, US). Mt. Camatis, Tayabas, Edaño 4508 오 (A). Celebes. Manado, Eyma 3671 j (L), NIFS bb17544 s 1,400 m. (A, L), bb21294 ㅇ $1,200 \mathrm{~m} .(\mathrm{L})$, bb24778 s (A). Obi. de Haan bb23815 j 700 m . (L).

Illustrations. Pilger, R. Pflanzenreich IV. 5 (Heft 18) : fig. 4 D-G. 1903; Nat. Pflanzenfam. ed. 13 : fig. 227 D-G. 1926; Gibbs, L. S. Jour. Linn. Soc. Bot. 42 : t. 8. 1914, all as Dacrydium falciforme.

Shape of pollen cone and mature leaf size and shape distinguish Falcatifolium falciforme from other species in the genus. In contrast, F. taxoides has a more slender pollen cone and mature foliage leaves with only sporadically the slightest upward curve of the upper leaf margin, while in $F$. falciforme such a curve is normally pronounced and only sporadically absent. The mature leaf size of $F$. papuanum is completely below the great size range of $F$. falciforme, differing also in a straight profile and apiculate tip. The larger, probably deep-shade-grown leaves of F . falciforme with the sweeping curve of their upper part are attractive and quite unique, paralleled only in $F$. angustum whose leaves are quite narrow.
18. Falcatifolium taxoides (Brongn. \& Gris) de Laubenfels, comb. nov.

Dacrydium taxoides Brongn. \& Gris, Ann. Sci. Nat. Paris V. 6: 245. 1866. Lectotype: Vieillard 1259 p.p. New Caledonia, Balade.
Podocarpus taxodioides Carrière, Traité Conif. 2: 657. 1867. Type: Vieillard 1259 p.p. New Caledonia, Wagap.
Podocarpus taxodioides var. gracilis Carrière, ibid. 658. Type: Vieillard 1259 p.p. New Caledonia, Balade.

Nageia taxoides (Brongn. \& Gris) Kuntze, Rev. Gen. Pl. 800. 1891; as N. taxodes.

Bush or small tree from 2 to perhaps 15 m . high, bark thin, more or less smooth, scattered with lenticels, light reddish brown and fibrous within, occasionally breaking off a flake; loosely branched; juvenile leaves bifacially flattened, long ovate, almost linear, tapering to a sharp tip, keeled on the lower surface, $15-20 \mathrm{~mm}$. long and 1.5 mm . wide; mature foliage leaves somewhat variable, smoothly curved outward at the base and expanding to the greatest width at about one third their length, then tapering slightly toward the rounded or acute apex, sometimes al-
most linear, the tip usually straight and pointing directly outward or occasionally bent slightly towards the branch apex without a corresponding bend in the upper leaf edge (or rarely a slight curve), more or less narrowed at the base to a petiole and then decurrent; pollen cone axillary or terminal, often with several on a short axillary branch with minute scales, cylindrical, $15-25 \mathrm{~mm}$. long and $1.5-2.0 \mathrm{~mm}$. in diam.; microsporophyll with a minute acuminate tip; seed cone on a slender scaly branch up to 6 mm . long, the cone with about a dozen larger elongated scales up to 2 mm . long, the apical one fertile, the whole cone becoming fleshy on maturity; seed with a humped epimatium at the base, oval, strongly keeled on the sides with an elongated blunt tip, 7 mm . long, 4 mm . wide, and 3 mm . thick.

Distribution. In moist rainforests (but not mossy forests) as an understory shrub or small tree throughout New Caledonia wherever these conditions occur, which is most commonly in the 800 to 1,200 meter range but occasionally reaching almost to sea level and to at least 1,400 meters.

New Caledonia. Balade, Vieillard 1259 p.p. s (p-lectotype of Dacrydium taxoides and holotype of Podocarpus taxodioides var. gracilis). Ignambi, Compton 1571 ㅇ $3,500 \mathrm{ft}$. (BM). Upper Diahot, Hürlimann 1887 of (p, z). Mt. Colnett, Hürlimann 1965 oे ( $\mathrm{P}, \mathrm{z}$ ). Tao, Baumann-Bodenheim $15881 \mathrm{~s}(\mathrm{P}, \mathrm{z})$. Wagap, Vieillard 1259 p.p. s (P-holotype of Podocarpus taxodioides; A, BM, GH, ill, k, ny, z-isotypes). Mt. Paéoua, McKee 17038 of $900-1,100 \mathrm{~m}$. (P), 17061 s (P). Mt. Boulinda, McKee 17359 oे $1,150-1,300 \mathrm{~m}$. (p). Haute Boulari, Virot s.n. s (A, P). Mt. Do, McKee 15968 if $900-1,000 \mathrm{~m}$. (p). Mt. Humboldt, Baumann-Bodenheim $15372 \mathrm{~s} 1,400 \mathrm{~m} .(\mathrm{P}, \mathrm{z})$. Mt. Mou, Virot $39 \mathrm{~s}(\mathrm{P}), 469 \mathrm{~s}$ (A, P), Franc 610 oे (A, P), 2090 s (A, Ny), 2091 s (A, Ny), Pitard 2090 s (A), Buchholz 1084 oे (ILL, K, P), 1447 oे (ILL), 1585 s (ILL, K, P), 1586 ô (ILL, K, P), 1786 s (ILL, K, P), 1787 s (ILL, K), de Laubenfels P131 of (SBT), P352 of $1,140 \mathrm{~m}$. (A, RSA), P353 ô (A, RSA), P354 ô (A, RSA, SBT), McKee 3541 ô (A, P), Thorne 28705 s (P), Baumann-Bodenheim 5654 A s (P, z), 15680 oे ( $\mathrm{P}, \mathrm{z}$ ), Baumann-Bodenheim \& Guillaumin $11259 \mathrm{~s}(\mathrm{P}, \mathrm{z}), 11262 \mathrm{~s}(\mathrm{P}, \mathrm{z}), 11286 \mathrm{~s}(\mathrm{P}, \mathrm{z})$, 11287 s ( P, z), 11292 s ( $\mathrm{P}, \mathrm{Z}$ ), 11296 s ( $\mathrm{P}, \mathrm{z}$ ), Blanchon 340 s (P). Mt. Dzumac, Barets 7 s (P), Blanchon 1247 s 700-900 m. (P). Dumbea, Sunshine Mine, Hürlimann 1587 s $650 \mathrm{~m} .(\mathrm{P}, \mathrm{z}), 1609 \mathrm{~s}(\mathrm{p}, \mathrm{z})$. Mt. Koghis (Mone, Bebo), Pancher 379 ô (вм, к, ny, p), Thoret s.n. रे (к), Balansa 185 ô (к, P), Stauffer 5729 s (p, z), Baumann-Bodenheim $14848 \mathrm{~s} 750 \mathrm{~m} .(\mathrm{z}), 14856 \mathrm{~s}(\mathrm{z}), 14912 \mathrm{~s} 900 \mathrm{~m} .(\mathrm{z}) . \mathrm{Mt}$. des Sources, Denizot s.n. ̂̀ (P), Bernier 293 우 (P), 295 s (P), 296 ô (P), 297 s, j (P), Buchholz 1198 s (ILL, K), 1203 s 800 m . (K, P), 1204 of 800 m . (ILL, K, P), 1205 j 950 m . (Ill, K, P), 1218 of, j 750 m . (ill, K, p), Hürlimann 265 s $900 \mathrm{~m} .(\mathrm{P}, \mathrm{z}), 920 \mathrm{~s}(\mathrm{P}, \mathrm{z})$, de Laubenfels P366 우 (RSA, SBT), Thorne 28644 s (P), Blanchon 566 s 300 m . (P). Upper R. Bleue, Bernier 301 s (p), BaumannBodenheim 15021 오 (P, z), de Laubenfels P400 ô 800 m . (RSA, SBT), Aubréville \& Heine $187 \mathrm{~s}, \mathrm{j}$ (P), Bernardi $9404 \mathrm{~s}(\mathrm{P}, \mathrm{z})$. Upper Mois de Mai, Buchholz 1390 s (ill, p). NE. of Lac Naoué, Hürlimann 3180 s 500 m . (z). Bois du Sud, Baumann-Bodenheim 12492 s ( $\mathrm{P}, \mathrm{z}$ ), 14996 오 ( $\mathrm{P}, \mathrm{z}$ ). Upper Kuébini, Hürlimann 3542 아 $265 \mathrm{~m} .(\mathrm{z}), 3543 \mathrm{~s}$ (z). Without loc., Balansa 184 oे (P), Deplanche 169 s (P), Mueller s.n. s (P), Sarlin 229 s (P), Baudouin 387 s (P).

Illustrations. Brongniart \& Gris, Nouv. Arch. Mus. Hist. Nat. Paris 4: t. 3. 1868, as Dacrydium taxoides; Pilger, R. Pflanzenreich IV. 5 (Heft 18) : fig. 4 H-L. 1903, as Dacrydium falciforme; Nat. Pflanzenfam. ed. 2. 13: fig. 227 H-L. 1926, as Dacrydium taxoides; Sarlin, P. Bois et Forêts de la Nouvelle-Calédonie, t. 19. 1954, as Dacrydium taxoides.

From Falcatifolium falciforme this species differs in its smaller leaves and pollen cones and in the straight rather than upwardly curved leaf tips. From $F$. papuanum it differs in lacking a pungent leaf tip and having distinctly larger leaves. These two species and $F$. taxoides are clearly quite closely related, being geographic segregates. F. taxoides is sometimes the host to another conifer as a root parasite (de Laubenfels 1959).
19. Falcatifolium papuanum de Laubenfels, sp. nov.

Arbusculus vel arbor ad 22 m . altus; folia patentia, ad apex apiculata, linearia vel ovato-linearia, $12-17 \mathrm{~mm}$. longa, $2-3.5 \mathrm{~mm}$. lata. Strobili masculi ignoti; strobili feminei cum ramulis brevissimis, squamis lanceolatis, $1.0-1.5 \mathrm{~mm}$. longis, bracteis strobilorum ca. 2 mm . longis; semen lateraliter et terminaliter carinatum, 6 mm . longum, 4.5 mm . latum, 3.5 mm . crassum. Holotypus: de Laubenfels P483 (A), New Guinea, Morobe District. Fig. 6a, b.

Distribution. In moist rainforests as an understory plant in the eastern part of the island of New Guinea (possibly in the Vogelkop), from 2,000 to 2,400 meters in elevation. Map 6.

New Guinea. Vogelkop: Mt. Nettoti, Van Royen \& Sleumer $8203 a$ j 1,920 m. (L). Terr. New Guinea: Al R. Mts., Womersley NGF $5354 \mathrm{~s} 7,000 \mathrm{ft}$. (A, bri, k, L). Mt. Hagan Sta., Hoogland \& Pullen 5891 \&, j 7,600 ft. (A, BRI, L). Mt. Kum, Womersley NGF 9419 s $7,000 \mathrm{ft}$. (BRI, K, L). Nondugl, Womersley NGF 4483 s $7,000 \mathrm{ft}$. (A, K, L). Morobe Dist., Edie Creek (Mt. Kaindi), de Laubenfels P483 우 6,500 ft. (A-holotype; к, RSA, SBT-isotypes), Brass 29127 s, $7,200 \mathrm{ft}$. (L), Womersley NGF $11038 \mathrm{~s} 6,700 \mathrm{ft}$. (BRI, K, L), NGF 13922 ㅇ $7,200 \mathrm{ft}$. ( $\mathrm{k}, \mathrm{L}$ ). Papua: Mt. Tafa, Cent. Div., Brass $5107 \mathrm{~s} 8,000 \mathrm{ft}$. (bri, ny). Ridge betw. Adai and Turui Rivers, Lane-Poole 397 s (A, K).

The apiculate and somewhat small leaves, whose mature size is completely below the considerable range of both Falcatifolium falciforme and $F$. taxoides, distinguish this new species. The leaf profile is straight as in $F$. taxoides, but without the rounded tip of that species. The juvenile leaves reach 22 mm . in length and 4 mm . in width. The bark, gray to dark brown, and flaky with large lenticels, and a red-brown inner bark, is not unusual. A remarkable specimen from the Vogelkop, an entire small plant of Falcatifolium, has distinctly smaller leaves, $6-10$ by 2 mm . (Fig. 6b). Inasmuch as juvenile leaves are usually distinctly larger than those of the adult, it may be that this isolated specimen represents a distinct entity.
20. Falcatifolium angustum de Laubenfels, sp. nov.


Figure 6. a, Falcatifolium papuanum de Laubenfels, portion of the holotype. de Laubenfels P483 (A), slightly enlarged; b [inset], the same, fragment of Van Royen \& Sleumer $8203 a$ from the Vogelkop, New Guinea (L), enlarged.

Arbor ad 20 m . alta; folia plantarum iuvenilis acicularia, crassiora quam lata, lanceolata, falcata, patentia, e basi curvata extrinsecus, ad apici curvata sursum, ca. 7 cm . longa, basem versum 1.2 mm . crassa; folia plantarum adultarum minus curvata vel quasi recta, pungentia, carinata


Figure 7. a, Falcatifolium angustum de Laubenfels, portion of the holotype, Brunig S8866 (L) ; b, Dacrycarpus expansus de Laubenfels, portion of the holotype, Hoogland \& Schodde 7463 (L); a and b, approximately natural size.
a latere, $18-35 \mathrm{~mm}$. longa, $1-2.5 \mathrm{~mm}$. crassa; strobili masculi terminales vel laterales, immaturi ovati, 8 mm . longi, 2 mm . diametro; strobili feminei ignoti. Holotypus: Brunig S8866 (L), Sarawak, Bintulu. Fig. 7a.

Distribution. At low elevation along the coast of Sarawak.
Sarawak. Bintulu, Brunig S8860 ㅎ 300 ft . (L), S8866 ڭ 400 ft . (L-holotype), S963 j 500 ft . (к, L). Kuching, Anderson 12448 s 800 ft . (к).

This distinct new species with its narrow but nevertheless bilaterally flattened leaves is intermediate between the other species of Falcatifolium and Dacrydium, and seems to represent an early stage of the development of the genus. In the transition between seedling leaves and normal foliage leaves of $F$. taxoides are found leaves of identical morphology to the adult leaves here. The bark is purplish-brown, irregularly flaky to scaly, weathering gray.

## JOURNAL OF THE ARNOLD ARBORETUM HARVARD UNIVERSITY

B. G. SCHUBERT<br>EDITOR

T. G. HARTLEY
C. E. WOOD, JR.
D. A. POWELL circulation


Mis cunt Entamithe
Jut 231969
BARDEN LIBRARY
JULY, 1969

PUBLISHED BY
THE ARNOLD ARBORETUM OF HARVARD UNIVERSITY CAMBRIDGE, MASSACHUSETTS

## THE JOURNAL OF THE ARNOLD ARBORETUM

Published quarterly by the Arnold Arboretum of Harvard University.
Subscription price $\$ 10.00$ per year.
Volumes I-XLV, reprinted, are available from the Kraus Reprint Corporation, 16 East 46th Street, New York, N.Y. 10017.
Subscriptions and remittances should be addressed to Miss Dulcre A. Powell, Arnold Arboretum, 22 Divinity Avenue, Cambridge, Massachusetts 02138.

## CONTENTS OF NUMBER 3

A Revision of the Malestan and Pacific Rainforest Conifers, I. Podocarpaceae, in part (Concluded). David J. de Lau- benfels ..... 315
The Vascular System in the Axis of Dracaena fragrans (Agavaceae), 1. Distribution and Development of Pri- mary Strands. M. H. Zimmermann and P. B. Tomlinson ..... 370
Comparative Morphological Studies in Dillentaceae, IV. Anatomy of the Node and Vascularization of the Leaf. William C. Dickison ..... 384
Anatomy and Ontogeny of the Cincinni and Flowers in Nannorrhops ritchiana (Palmae). Natalie $W$. Uhl ..... 411
Aspects of Morphology of Amentotaxus formosana with a Note on the Taxonomic Position of the Genus. Hsuan Keng ..... 432
A Karyological Survey of Lonicera, II. Lily Rüdenberg and Peter S. Green ..... 449
Notes on West Indian Orchids, I. Leslie A. Garay ..... 462
Pollen Characteristics of African Species of Vernonia. C. Earle Smith, Jr. ..... 469
A New Species of Ficus from Suriname. Gordon P. DeWolf, Jr. ..... 478
Volume 50, No. 2, including pages 159-314 was issued April 15, 1969.


[^0]:    ${ }^{1}$ To be taken up as a genus elsewhere.

[^1]:    ${ }^{2}$ Species are numbered consecutively through the whole paper.
    ${ }^{3}$ Hickel did not specify a type, but listed many specimens of which Balansa 576 is the first. The one specimen collected by Pierre is here chosen as the lectotype because of the specific epithet.

[^2]:    ${ }^{4}$ This collection is probably the same as the type. Vieillard's material is mingled with that of Pancher, sometimes with both names, sometimes with the number, and sometimes without.

[^3]:    Pilger (dots), D. comosum Corner, known only from the Malay peninsula, $D$. lycopodioides Brongniart \& Gris, known only from New Caledonia; 6, Falcatifolium falciforme (Parlatore) de Laubenfels (dots west of line), F. papuanum de Laubenfels (dots east of line), F. taxoides (Brongniart \& Gris) de Laubenfels, known only from New Caledonia.

